2.2.2 液状化

建設省国土地理院近畿地方測量部では、被災地の航空写真から液状化の発生状況を読み取り、1/10000の地図にカラーで表わしている。今回の地震では、ポートアイランドや六甲アイランドを含む沿岸の埋立地盤が広範囲に液状化し\(^6\)、過去最大規模の現象であったことが米科学財団の専門家によって指摘されている\(^7\)。

今回の液状化による被害は、平坦な冲積・埋立て地域における地盤沈下と沿岸部の地盤の側方流動に大別できる。地盤の液状化現象は、ライフラインなど埋設物の破断、橋脚の損傷、護岸の移動や傾斜、港湾施設の倒壊という構造物の被害要因となっている。また、神戸市の臨海コンビナートでは、415基の石油タンクのうち、約40基が傾いたり変形した\(^8\)（写真2.2.1）。これらは、主に地盤の液状化が原因と考えられている。

西宮浜埋立地区を除き、これら液状化発生地点のほぼ全域を対象とした現地調査（2月3〜6日）の結果を以下に述べる。図2.2.2には、重点調査を行った埋立て地の位置を示し、また、表2.2.1にはこれらの埋立て地の概要を示す。

表2.2.1 埋立て地の概要

<table>
<thead>
<tr>
<th>埋立地</th>
<th>埋立期間</th>
<th>面積</th>
</tr>
</thead>
<tbody>
<tr>
<td>芦屋浜第一工区（宮川以西）</td>
<td>昭和44年</td>
<td>57ha</td>
</tr>
<tr>
<td>芦屋浜第二工区（宮川以東）</td>
<td>昭和44年</td>
<td>68ha</td>
</tr>
<tr>
<td>神戸ポートアイランド一期</td>
<td>昭和41年</td>
<td>436ha</td>
</tr>
<tr>
<td>六甲アイランド一期</td>
<td>昭和47年</td>
<td>580ha</td>
</tr>
</tbody>
</table>

図2.2.2 埋立て地の位置

K.P.+6m K.P.+6m K.P.+4m

K.P.:Kobe Peilの略称
（神戸港修築工事基準面）

図2.2.3 埋立て地の地層構成
大阪湾岸の地盤は、地殻変動と海水面変動との関係の中で水で地中で層が堆積し、14層の海成粘土層か砂層との互層を形成している。各埋立て地は、これらの層のうち深く埋められた層の上部を埋立てて形成されている。図2.2.3にはそれぞれの代表的な地盤柱状図を示す。現地踏査時点で、主な被害状況の分布を図2.2.4に、1月20日撮影の航写真から道路面の噴砂を判読したものを図2.2.5に示す。

宮川以東の浜風町東側では、尼崎港護岸が崩壊し、その際を通る道路は相対で60cm程度の段差ができ、道路の下には空隙が見られた（図2.2.4-図中①、写真2.2.2）。また、その道路付近上空を横断する歩行者用橋梁では、その取付道路との段差が60cm程度あり、構造物の支持方法の違いによる沈下の差が顕著であった（図2.2.4-②）。住宅地においては、宮川以東の浜風町（図2.2.5-③）と宮川以西の緑町（図2.2.5-④）、潮見町（図2.2.5-⑤）で噴砂量の違いが顕著であった。浜風町と潮見町ではこの時点での道路に噴出した砂が一たるところに集積されていた（写真2.2.3）。また、戸建住宅のガレージ（床：モルタル）の壁には、砂を含んだ泥水が、道路レベルより30cmほど上昇したと思われる汚れが見られた（図2.2.4-⑥）。さらに、液状化による地盤の支持力低下で、大きく傾斜した建物（図2.2.4-⑦）もあった。これに対して、緑町では道路に数cm幅の地割れがあった（図2.2.4-⑧）が、土が露出している庭にも噴砂等の跡は見られず、これは航写真からも判読できた。この辺りは、淡路の山砂と一部島山産の海砂で埋立てられた地盤で、その層厚は13〜15m、N値が5〜20となっている。埋立て土層の下部は、N値3〜5の沖積粘性土が堆積している。

図2.2.6に埋立当時の付近のボーリング柱状図10を示す。これによると、D,EはA,Bに比べて粘性土層上部の砂層が厚く、そのN値も小さいことが分かれる。さらに文献10には、「埋立て土層中にはG.L.-5m付近に、N値10前後の海砂層を介在するところが部分的にあり、地下水位がG.L.-3.5mの深さにあるので、液状化現象が予想され、地震時の地盤の安定性の検討を要した。」と記され、液状化を想定していたことが窺える。

○ 相対沈下大（30cm以上）
● 相対沈下小（30cm未満）
▲ 歩道道上
■ 地割れ
◇ 不同沈下

図2.2.4 芦屋浜被害状況分布
図2.2.5 芦屋浜の噴砂状況（踏査と航空写真による）およびポーリング位置

図2.2.6 芦屋浜のポーリング柱状図

-17-