1. Introduction

According to the United Nations (2007), the 5-year average of the crude birth rate (expressed as the number of births per 1000 persons) in developed economies was 22.4 in the period of 1950-55, and halved to 11.1 in 2000-05. A significant and steady drop in the birth rate is one cause of demographic changes taking place in advanced countries. Another important aspect of the demographic changes is that people live longer. Life expectancy in developed economies was 66.1 years in 1950-55 and rose to 82.4 years in 2000-05. These two features of demographic changes increase the number of the old people relative to the young people. This means a rise in the median age of population, and more importantly, an increase in the age of median voters as compared to decades ago. For example, the age of the Japanese median voters was 38.4 in 1950 and rose to 51.3 in 2005. To the extent that median voters are important in policy determination in a democracy, the on-going demographic changes are bound to cause policy shifts in developed countries. Then, the following questions arise. Does an economy...
adopt lower or higher tax rates when the demographic structure changes? How do demographic changes affect economic growth? Is economic growth slowdown an inevitable outcome?

Motivated by the above observations and questions, this paper examines the impact of demographic changes on fiscal policy and economic growth in a politico-economic model with emphasis on conflicts of interests among different generations in policy determination. More specifically, our model is based on three traits. First, public capital accumulation, financed by tax revenue, drives economic growth. Second, consumers who live for a finite period have their own ideal tax rate, depending on their remaining life time. Third, the median voter determines a tax rate in equilibrium. In this framework, comparative statistics related to demographic changes, e.g. a fall in the birth rate, are considered, and theoretical predictions are empirically examined by using data of G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States). Before explaining our results, it is informative to highlight key differences between the present paper and existing studies.

Many studies explore the issue of demographic changes in models similar to ours. However, given the overlapping generations (OLG) framework adopted in these studies, they have either one of the following features, which we argue are problematic in a politico-economic analysis of demographic changes.

1. As long as population grows in OLG models where consumers live for two periods, the median voter always belongs to the “young” generation. This means that population growth slowdown does not change the “age” of the median voter. Existing studies deal with the problem by introducing heterogeneity among consumers in, e.g. skills. However, policy shifts caused under this assumption reflect changes in skills rather than the age of the median voter. We argue that this feature is the most problematic, since the primary problem of aging is related to the concept of time, whereas the skill problem is secondary in the sense that incentives to enhance skills depend on time, i.e. workers’ age and remaining life time. Furthermore, empirical studies show that productivity and age of workers are not necessarily related in a monotonic way.

2. OLG models where consumers live for three periods also suffer the same problem. The age of median voters in industrialized countries typically falls in the range of 35-45. This implies that the median voters’ age is crucially dependent on whether a greater number of consumers are in their 30s or 40s. However, in OLG models with three-periods-lived consumers, voters in their 30s or 40s are all in the “middle-age” generation group, if life is plausibly assumed to last for about 75 years in developed economies.

3) For example, see Medoff and Abraham (1980) and references in Skirbekk (2004).
4) For example, if there are more voters in their 30s than 40s, median voters’ age is closer to 35.
5) Another aspect of the problem is that the analysis of the impacts of the baby boom cohort aging on fiscal policy is unsatisfactory in OLG models with three-periods-lived voters.
The present paper deals with the above two problems by developing a continuous-time model where consumers live for a fixed time interval. Especially, the assumption of continuous time allows us to establish results which are purely based on the “time effect” of aging rather than something else.

In this sense, Boucekkine et al. (2002) is the closest study to the present paper. They develop a continuous-time OLG model à la Blanchard (1985) where consumers’ life period is stochastic. However, there are important differences in the mechanism where the demographic changes affect growth. Boucekkine et al. (2002) show that the incentive to accumulate human capital depends on the life expectancy of consumers. As people live longer, private investment/saving in the form of schooling changes, thus affecting growth. On the other hand, the present paper focuses on consumers’ choice of public investment/saving through fiscal policy. In particular, we stress the role of a political system through which the demographic changes influence the economy’s decision on the accumulation of public capital. In this respect, our paper and Boucekkine et al. (2002) highlight complementary aspects of the analysis of growth and demographic changes in a continuous-time framework.

Turning to the description of our model, we assume that consumers pay taxes which are used to finance public investment. Since public capital accumulation drives economic growth, consumers have their own ideal tax rate chosen on the basis of a trade-off between current and future consumption. An equilibrium tax rate is determined through majority voting, i.e. by the median voter. In turn, long-run growth of income depends on an equilibrium tax rate selected by the median voter. Since her ideal tax rate depends on the model parameters (e.g. birth rate and life expectancy), our model allows us to derive theoretical predictions about the effect of demographic changes on fiscal policy and growth.

The first key result is that a rise in life expectancy increases the equilibrium tax rate. This leads to higher economic growth, given that the two variables are positively related. This result can be easily explained. Note that younger voters prefer higher tax rates than older voters, because the former have a longer remaining life time during which they can benefit from higher economic growth. For the same reason, people tend to prefer higher tax rates as they live longer (Proposition 1). Since the remaining life time of the median voter is an increasing function of the life expectancy (Corollary 1), the equilibrium tax rate is also an increasing function of the life expectancy (Proposition 3).

The second main result concerns the decline in the birth rate. A lower birth rate increases the number of older relative to younger consumers (with life expectancy unchanged). That is, the median voter becomes older and prefers a lower tax rate. On the other hand, public capital is

6) A deterministic life length in the present paper can be easily made stochastic. But this extension is not done since little additional insight is gained from it.

7) Previous research has produced conflicting empirical results on the correlation of the government size and economic growth. Barro (1996) and Alesina et al. (2005) obtain a negative correlation between total government spending (as a percentage of GDP) and growth. Levine and Renelt (1992) and Sala-i-Martin (1997a, b) find no stable correlation between them. However, Caselli et al. (1996) address the issues of correlation among country-specific effects and endogeneity of explanatory variables, and obtain a positive correlation between government spending and growth. As for the correlation between government investment expenditure (as a percentage of GDP) and growth, Kelly (1997) and Sala-i-Martin (1997b) demonstrate a significant positive correlation, whereas Levine and Renelt (1992) do not obtain robust results.
assumed to be subject to congestion, as indicated by many studies on growth and public capital.\(^8\) As population growth slows down, congestion is eased and the marginal benefit of a higher tax increases. This makes the median voters choose a higher tax rate. These two opposing effects give rise to an inverted U relationship between the birth rate and taxes (and growth). To put it differently, if the initial birth rate is sufficiently low, a falling birth rate will lead to lower equilibrium tax rates. Since the birth rates of the industrialized countries are already very low, further decrease in the birth rate will reduce economic growth.

Note that population aging (a longer life expectancy) and a lower birth rate (a greater number of old relative to young people) are different aspects of demographic changes. Our analysis shows that they have contrasting impacts on fiscal policy and economic growth. In industrialized countries, therefore, the relative strength of these phenomena will determine the directions of future changes in taxes and economic growth.

Given these results, we use data on the G7 countries for the period of 1980-2004 to empirically analyze whether the above predictions are observed. First, the predicted relationships between tax rates and other variables (median voter’s age, birth rate, and life expectancy) are well supported by data. Second, data also support predictions regarding the relationship between growth on one hand and the birth rate and life expectancy on the other. An inverted U-shaped relationship between the birth rate and economic growth is observed. A positive correlation between a longer life expectancy and growth is also shown to hold in data. To check the robustness of our results, the sample period is extended to cover the period of 1970-2004. Overall, results turn out to be convincing.

There is another important contribution of the present paper. There are many empirical studies on the impact of changes in the demographic structure of an economy on growth.\(^9\) To the best of our knowledge, this paper is the first attempt to empirically analyze the effects of a falling birth rate and aging population on tax rates and economic growth in a politico-economic framework.

The structure of the present paper is as follows. Section 2 develops a politico-economic model of growth in a continuous-time framework. Three key propositions are derived. In the next section, an empirical analysis is conducted to examine whether or not data support the theoretical predictions of the model. Section 4 gives concluding remarks.

2. The Model

2.1 Technology

Time is continuous. Final output \(Y\) (a numeraire) is produced according to the following production function:

\[
Y(t) = \tilde{G}(t) \cdot L(t),
\]

8) For example, see Gramlich (1994) on congestion of infrastructure investment. The congestion effect of public capital is stressed by many studies, including Barro and Sala-i-Martin (1992).

\(L\) denotes the number of workers. \(\hat{G}\) represents the effect of the stock of public physical capital, which is captured by the following assumption:\(^{10}\)

\[
\hat{G}(t) = \frac{G(t)}{L(t)}.
\] \(2\)

The presence of \(L\) in the denominator means that public capital is subject to congestion.\(^{11}\) The absence of private physical capital and the assumptions (1) and (2), albeit simple, allow us to develop our argument in a tractable framework.

To finance public investment, the government taxes final output at a given rate \(1 > \tau > 0\). Given this government policy, profits of final output producers are maximized when the following condition holds:

\[
w(t) = (1 - \tau) \frac{G(t)}{L(t)}. \tag{3}\]

Public capital \(G\) accumulates according to

\[
G(t) = A \int_{-\infty}^{t} \tau Y(s) ds. \tag{4}\]

The integral on the right-hand side is the sum of tax revenues collected up to time \(t\). The parameter \(A\) captures the extent to which tax revenues are efficiently used to produce public capital. In other words, \(A\) is interpreted to be dependent on the quality of institutions in the economy. Then, using (1) and (4), we can derive the growth rate of aggregate output

\[
\frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{G}(t)}{G(t)} = A\tau. \tag{5}\]

This equation shows that growth accelerates with a tax rate. As shown shortly, \(\tau\) will be endogenously determined through a political process.

2.2 Consumers

2.2.1 Demographic Structure

The total number of consumers-cum-workers at time \(t\) is \(L\). At every moment, \(\beta e^{\beta t}\) workers are born where \(\beta > 0\) is a constant birth rate. They live for a finite time period \(0 < T < \infty\). To track the age cohort of consumers, let \(a \in [0, T]\) denote their age. Given these assumptions, population \(L\) is given by

\[
L(t) = \int_{0}^{T} \beta e^{\beta(t-a)} da = e^{\beta t} \left(1 - e^{-\beta T}\right). \tag{6}\]

Population is increasing in \(\beta\) and \(T\). Since \(\beta\) and \(T\) are constant, population grows at a rate of

10) A minor generalization of (2) is to assume \(\hat{G}(t) = G(t)/L(t)^{\phi}, \phi > 0\). But, this modification does not change the key results in any fundamental way.

11) This assumption follows many studies on public infrastructure (see footnote 8). One consequence of this assumption is the removal of so-called scale effects (i.e. a positive relationship between growth and the size of an economy), which is not supported by data (e.g. see Jones (2005)).
\[
\frac{\dot{L}(t)}{L(t)} = \beta. \tag{7}
\]

2.2.2 Voting

Consumers are assumed to be risk-neutral. The intertemporal utility function of a consumer of age \(a\) is

\[
U_a(t) = \int_t^{T-a} e^{-\rho(s-t)} c(s) \, ds
\tag{8}
\]

where \(\rho\) is the subjective rate of time preference and \(c(s)\) denotes consumption of final output. We assume that consumers spend all their wage income in each instant. Therefore,

\[
c(s) = (1 - \tau) \frac{G(t)}{L(t)} e^{(\alpha - \beta)(s-t)} \quad \text{for } s \geq t
\tag{9}
\]

using (3). \((1 - \tau)\) on the right-hand side of (9) represents the static negative effect of the tax. This arises because the tax lowers the marginal product of labor, generating a distortionary effect on wage. On the other hand, \(e^{(\alpha - \beta)s}\) captures the dynamic positive effect of the tax. A higher tax rate accelerates the accumulation of public capital, so that wage grows at a faster rate. Substituting (9) into (8) gives

\[
U_a(t) = \frac{G(t)}{L(t)} \left(1 - \tau\right) \cdot \left(1 + \int_t^{T-a} \frac{(1 - \tau) G(t)}{L(t)} e^{(\alpha - \beta)(s-t)} \, ds\right) \tag{10}
\]

where \(F(\tau; a) = \int_t^{T-a} e^{(-\rho + \beta - A_T)(s-t)} \, ds\) and \(\alpha + \beta - A_T > 0\) is assumed. An ideal tax rate of consumers of age \(a\) can be derived by maximizing \(U_a\) by choosing \(\tau\). A trade-off is between the static negative effect of a higher tax, captured by \((1 - \tau)\) in (10) and the dynamic positive effect, represented by \(F(\tau; a)\). Note that the dynamic effect depends on the age of consumers. This is the channel through which the demographic structure of population affects growth in a politico-economic equilibrium.

2.2.3 Ideal Tax Rate

The ideal tax rate of consumers of age \(a\) can be derived by maximizing (10) with respect to \(\tau\). The F.O.C. is

\[
\frac{MB(\tau; a)}{(1 - \tau) F(\tau; a)} = \frac{MC(\tau; a)}{F(\tau; a)}. \tag{11}
\]

\(MB(\tau; a)\) of (11) is the marginal benefit of a higher tax rate, which is realized through a higher growth rate (dynamic effect). On the other hand, \(MC(\tau; a)\) is the marginal cost of a higher \(\tau\) due to the distortionary tax (static effect). Appendix A shows that utility maximization requires \(A > \rho + \beta\), which means \(\tau \in (0, (\rho + \beta)/A)\) in equilibrium. It also establishes that the second-
order condition is satisfied and a unique ideal tax rate exists, given age of consumers. In addition, the appendix demonstrates that both of $MB(\tau; a)$ and $MC(\tau; a)$ are increasing in τ and that the MB curve is less steep than the MC curve at equilibrium, as shown in Figure 1.

Note that $T - a$ is the remaining life time of consumers of age a. Given the above discussion and using (11), the ideal tax rate of consumers who will live for $T - a$ is implicitly defined by

$$\tau = f(T - a; \beta, \rho, A).$$

Then, the next proposition can be established:

Proposition 1. The ideal tax rate of consumers, whose remaining life time is $T - a$, has the following properties.

$$\frac{\partial \tau}{\partial (T - a)} > 0, \quad (b) \frac{\partial \tau}{\partial \beta} < 0, \quad (c) \frac{\partial \tau}{\partial \rho} < 0, \quad (d) \frac{\partial \tau}{\partial A} > 0.$$

Proof. See Appendix B.

We develop intuitive explanations for Proposition 1, which are important for later analysis. First, consider the effects of the remaining life time of consumers $T - a$. The marginal benefit of a higher tax rate is realized through a higher growth rate. Such a dynamic positive effect is larger with the remaining life time of consumers. That is, the marginal benefit is larger with T and smaller with a. Turning to the effect of β (the birth rate), the acceleration of population growth aggravates congestion of using public capital, which results in a lower growth rate of wage, and

12) An equilibrium does not need to be interior for all consumers for our key results, as long as the median voter’s ideal tax rate is between 0 and $(\rho + \beta) / A$.

Figure 1 The determination of the ideal tax rate of consumers of age a.

hence, consumption per capita. This reduces the marginal benefit of the public investment, leading to a lower ideal tax rate. When \(\rho \) (the subjective rate of time preference) is large, consumers care less about the future benefit of the public investment and hence prefer a lower tax rate. Finally, remember that \(A \) shows how efficiently tax revenues are used for public investment by the government. As the institutional quality rises, consumers increase their ideal tax rate.

2.2.4 Median Voter

We assume that the median voter determines the equilibrium tax rate. This is a simple, but widely used modeling approach of a political process of democratic decisions. Denote the age of the median voter by \(a_m \). It is implicitly determined by

\[
\frac{L_t}{2} = \int_0^{a_m} \beta e^{\beta(t-a)} da,
\]

The right-hand side is the number of population of age from zero to \(a_m \). Using (6), one can rewrite (14) as

\[
a_m = \ln \left(\frac{2}{1 + e^{-\beta T}} \right)^{\frac{1}{\beta}} \equiv a_m(\beta, T).
\]

Given (15), the following proposition can be established.

Proposition 2. The age of the median voter, \(a_m \), has the following properties.

\[
\text{(a) } 1 > \frac{\partial a_m}{\partial T} > 0, \quad \text{(b) } \frac{\partial a_m}{\partial \beta} < 0.
\]

Proof: See Appendix C.

To give intuitive explanations for Proposition 2, consider the effect of \(T \) first. A higher \(T \) means an increase in life expectancy of consumers. As they live longer, the number of older people increases, and hence the median voter gets older. It should be easy to understand that the age of the median voter does not increase as much as life expectancy. Turning to the effect of \(\beta \), recall that \(\beta e^{\beta t} \) of workers are born at time \(t \). Therefore, given a constant life-span \(T \), the relative number of younger people increases in \(\beta \). This makes the median voter younger.

Now, the remaining life time of the median voter is

\[
T - a_m(\beta, T).
\]

Given Proposition 2, the following results are obvious.

Corollary 1. The remaining life time of the median voter has the following properties:

\[
\text{(a) } \frac{\partial (T - a_m(\beta, T))}{\partial T} > 0, \quad \text{(b) } \frac{\partial (T - a_m(\beta, T))}{\partial \beta} > 0.
\]

Proof: Omitted.

We will exploit this result to establish our key results below.
2.3 Political Equilibrium

The equilibrium conditions are given by (12) and (17) with two unknowns τ and $T - a$, and they are depicted in Figure 2. (12) shows a positive relation between a tax rate and the remaining life time. As explained above, younger voters prefer a higher tax rate, since they gain more from public investment than old consumers. On the other hand, (17) defines the remainder of the median voter’s life time. Using these conditions, we can establish the following proposition:

Proposition 3. The equilibrium tax rate τ^* has the following properties:

(a) $\frac{\partial \tau^*}{\partial T} > 0$, (b) $\frac{\partial \tau^*}{\partial \beta} \geq 0$, (c) $\frac{\partial \tau^*}{\partial \rho} < 0$, (d) $\frac{\partial \tau^*}{\partial \Lambda} > 0$.

Proof: See Appendix D.

Consider result (a) first. Recall that the median voter lives longer as life expectancy increases (Corollary 1). Thus, the pivotal voter with a longer remaining life time gains more from future consumption and votes for a higher tax rate. Therefore, the equilibrium tax rate τ^* rises as people live longer. This result is represented by a rightward shift of the (17) line in Figure 2. The result also implies that economic growth accelerates due to public investment as peoples’ life expectancy rises.

Behind result (a) is that the median voter prefers a higher tax rate as she lives longer. In fact, another reason for a longer remaining life time of the median voter can be introduced into the model. Suppose that consumers whose age is \hat{a} or over only can vote. \hat{a} is the minimum voting age and assume $0 < \hat{a} < T$. Then, the remaining life time of the median voter is given by

$$T - a_m (\beta, T, \hat{a}) = \ln \left(\frac{2}{2e^{-\beta \hat{a}} - 1 + e^{-\beta T}} \right)^{1/\beta}.$$ \hspace{1cm} (20)

One can confirm that $T - a_m$ is decreasing in \hat{a}. If the minimum voting age is reduced, the median voter gets younger and lives longer. A consequence of this extension is obvious – an equilibrium tax rate is higher with a higher growth rate. Indeed, the issue of whether or not the minimum voting age should be reduced has been hotly debated in Japan and the UK in recent years. Our paper offers an additional benefit of the reduction of the voting age which is not considered by the UK and Japanese governments. \hspace{1cm} (13)

Next, consider result (b) of Proposition 3. There are two opposing effects. First, as explained above, a higher β makes the median voter younger, making her remaining life time longer. We call this the rejuvenation effect. This is represented by a rightward shift of the (17) curve in Figure 2, tending to increase τ^*. Second, a higher β aggravates congestion of public capital and reduces the ideal tax rate of all consumers, including the median voter. Because of this congestion effect, the (12) curve shifts down in Figure 2, tending to decrease τ^*. In general, the direction of changes in τ is ambiguous due to these two opposing effects. However,

\hspace{1cm} (13) See Williams and White (2007) for reasons in favor of the plan in the UK. In Japan, a legislation to reduce the minimum voting age for national referendum to 18 from 20 was enacted in May 2007 as part of an effort to amend the Constitution. This move is followed by the creation of a governmental panel to consider a plan to reduce the minimum voting age in public election to 18 from 20 (as of writing the paper).
we can demonstrate the following result.

Let $\tau^* = \tau(\beta)$ denote a function relating an equilibrium tax rate to the birth rate. Appendix D demonstrates that (i) $\tau' (0) > 0$ under a certain condition and (ii) there exists $\tilde{\beta} > 0$ such that $0 = \tau^* (\tilde{\beta})$. Result (i) means that an equilibrium tax rate increases as the birth rate rises when the latter is initially small enough. On the other hand, result (ii) implies that an equilibrium tax rate goes to zero if the birth rate is too high. These results suggest that an equilibrium tax rate and the birth rate are related in a non-monotonic way, indicating the possibility of an inverted U relationship. Indeed, extensive simulation analysis suggests that an inverted U relationship with a single peak is a robust prediction of the model with plausible parameter values. Figure 3 shows an example where life expectancy is 83 years old and the long-run real interest rate is 3%. The value of A is chosen such that tax rates are broadly consistent with a real economy. In the figure, when β is low, the rejuvenating effect of a higher birth rate dominates the congestion effect, so that τ^* rises. The dominance of the first over the second effects is reversed when β is high.

There are two points worth mentioning regarding result (b) of Proposition 3. First, in developed economies, rising social security payments are expected to absorb a greater proportion of public expenditure due to demographic changes. This raises concerns about the sustainability of public deficits, thus a mounting pressure for higher tax rates. Our analysis, on the other hand, indicates that population growth slowdown leads to higher tax rates even in the absence of social security payments (as long as the birth rate is initially high). The reason for higher tax rates is not related to government budget issues, but to voters’ preferences. Second, an inverted U relationship suggests that an economy experiencing population growth slowdown may initially face an increasing tax rate, followed by a falling tax rate. Our model also suggests that the rate of economic growth may also follow a similar pattern. Indeed, we will confirm these results in our empirical analysis below.
3. Empirical Analysis

3.1 Data

We use the annual data of G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States). The real growth rate \(g\), the tax burden ratio \(\tau\), the age of the median voter \(a_m\), the birth rate \(\beta\), and life expectancy \(T\) are obtained from the OECD (Organization for Economic Co-operation and Development) and other sources. Details of data construction are explained in the Appendix E. Since we have only annual data with small sample size for each country, we employ a panel data analysis to cope with this problem. The implication of this approach is that a combination of data for multiple countries can be used to perform powerful tests, when only annual data is available for individual countries.

In order to check the robustness of our empirical results, we use two sample periods, i.e., sample A: 1970-2004 and sample B: 1980-2004. This enables us to check whether our empirical results depend on a particular sample period.

3.2 Empirical Techniques

We perform empirical analyses based on (12) and (15) of the theoretical model. For our purpose, we linearly specify the model as follows.

\[
\begin{align*}
\tau_t &= \alpha_1 + \alpha_2 \cdot a_{m,t} + \alpha_3 \cdot \beta_t + \alpha_4 \cdot T_t + u_{1t} \quad (\alpha_2 < 0, \alpha_3 < 0, \alpha_4 > 0) \\
a_{m,t} &= \alpha_5 + \alpha_6 \cdot \beta_t + \alpha_7 \cdot T_t + u_{2t} \quad (\alpha_6 < 0, \alpha_7 > 0)
\end{align*}
\]

where \(\alpha_i \ (i = 1, 2, \cdots, 7)\) are unknown parameters, and \(u_{it} \ (i = 1, 2)\) are error terms with \(E[u_{it} | I_{t-1}] = 0\) and \(I_{t-1}\) is the information set available at time \(t - 1\). Here, it is assumed that \(I_{t-1} \subset I_t\). Equations (21) and (22) correspond to (12) and (15) of the theoretical model.
respectively. We expect $\alpha_2 < 0$, $\alpha_3 < 0$, and $\alpha_4 > 0$ from Proposition 1, and $\alpha_6 < 0$ and $\alpha_7 > 0$ from Proposition 2.

We estimate a fixed effect model using the generalized method of moments (GMM). GMM has several characteristics (Hansen, 1982). The use of GMM enables us to take into consideration the endogeneity of explained variables in the system. An HAC (heteroskedasticity autocorrelation consistent) covariance matrix makes it possible to deal with heteroskedasticity and serial correlation in our analysis, and we are able to test the over-identifying restrictions of our empirical model by using Hansen’s J-test. To enhance the efficiency of our estimates, we use iterated GMM to obtain estimates and their standard error.

3.3 Empirical results

Table 1 shows the estimates of (21) for 1970-2004 and 1980-2004. We use the following instrumental variables:

$$z = (1, t_{t-1}, t_{t-2}, a_{m,t-1}, a_{m,t-2}, \beta_{t-1}, \beta_{t-2}, T_{t-1}, T_{t-2}).$$

In Table 1, every coefficient estimate meets the theoretical sign conditions specified in Propositions 1 and 2, and is statistically significant at the 1% level. Additionally, with a low J-statistic of 29.9901 for 1970-2004 and 23.1258 for 1980-2004, the over-identifying restriction of the model is empirically accepted. The coefficient of the median voter age (α_2) is estimated to be -0.7269 for 1970-2004 and -0.4945 for 1980-2004, which indicate that one-year increase in the age of the median voter results in a decrease of 0.6%pts (0.49%pts) in tax rates using the data of 1970-2004 (1980-2004).\(^{15}\) The birth rate coefficient (α_3) is estimated to be -1.0527 for 1970-2004 and -0.4760 for 1980-2004. Therefore, holding the age of the median voter constant, one-point increase in the birth rate results in an decrease of 1.05%pts (0.48%pts) in tax rates using the data of 1970-2004 (1980-2004).\(^{16}\) Lastly, the coefficient of the average life expectancy (α_4) is estimated to be 0.6241 for 1970-2004 and 0.6723 for 1980-2004. Holding the age of the median voter constant, one-year increase in the average life expectancy results in more than 0.6%pts higher tax rates.\(^{18}\)

Table 2 shows the estimates of (22) for 1970-2004 and 1980-2004. We use the following instrumental variables:

$$z = (1, a_{m,t-1}, a_{m,t-2}, \beta_{t-1}, \beta_{t-2}, T_{t-1}, T_{t-2}).$$

Every coefficient estimate meets the theoretical sign condition and is statistically significant

14) We obtain similar empirical results when we use the following instruments: $z = (1, t_{t-1}, a_{m,t-1}, \beta_{t-1}, T_{t-1})$

15) The difference between the peak and the bottom ages of the median voter in this period is 11.7 years for Japan, 6.0 years for Canada, 4.7 years for the US, 2.1 years for the UK, and between 3.0 and 3.6 years for other countries.

16) This result does not necessarily imply that the equilibrium tax rate is decreasing in the birth rate, since the age of the median voter decreases as the birth rate increases.

17) The decrease in the birth rate from 1970 to 1980 is 5.6 for Italy, 5.0 for Japan, 3.3 for Germany, and between 2.4 and 3.0 for other countries. The decrease in the birth rate from 1980 to 2004 is 4.8 for Japan, 4.5 for Canada, and between 1.4 and 2.1 for other countries.

18) The increase in the average life expectancy from 1970 to 1980 is 4.1 years for Japan, 1.7 years for the UK, and between 2.1 and 2.9 for other countries. The increase in the average life expectancy from 1980 to 2004 is 4.2 years for the US, 4.9 years for Canada, and between 5.2 years and 6.0 years for other countries.

19) We obtained similar empirical results when we use the following instruments: $z = (1, a_{m,t-1}, \beta_{t-1}, T_{t-1})$
The economic model of the equilibrium tax rate is empirically supported by the data of G7 countries. Equation (5) has shown that the growth rate is increasing with the tax rate, and Proposition 3 has shown that the tax rate has an inverted U relationship with the birth rate. Hence we expect $\alpha_6 > 0$ and $\alpha_{12} < 0$. Moreover, Proposition 3 shows that an increase in the average life expectancy results in a higher tax rate. Hence, we expect $\alpha_{11} > 0$. In the empirical analysis, we use the following instrumental variables:

$$z = (1; m_{-1}, m_{-2}; T_{t-1}, T_{t-2})$$

Table 1 Empirical Results

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>SE</th>
<th>p-value</th>
<th>Estimate</th>
<th>SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_2</td>
<td>-0.7269</td>
<td>0.0825</td>
<td>0.0000</td>
<td>-0.4945</td>
<td>0.0884</td>
<td>0.0000</td>
</tr>
<tr>
<td>α_3</td>
<td>-1.0527</td>
<td>0.0783</td>
<td>0.0000</td>
<td>-0.4760</td>
<td>0.1497</td>
<td>0.0018</td>
</tr>
<tr>
<td>α_4</td>
<td>0.6241</td>
<td>0.0631</td>
<td>0.0000</td>
<td>0.6723</td>
<td>0.0744</td>
<td>0.0000</td>
</tr>
<tr>
<td>J statistic</td>
<td>29.9901</td>
<td></td>
<td></td>
<td>23.1298</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Instrumental variables: $z = (1; T_{t-1}, T_{t-2}, a_{m,t-1}, a_{m,t-2}, \beta_{t-1}, \beta_{t-2}, T_{t-1}, T_{t-2})$

Table 2 Empirical Results

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Estimate</th>
<th>SE</th>
<th>p-value</th>
<th>Estimate</th>
<th>SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_6</td>
<td>-0.5276</td>
<td>0.0610</td>
<td>0.0000</td>
<td>-0.8024</td>
<td>0.0659</td>
<td>0.0000</td>
</tr>
<tr>
<td>α_{17}</td>
<td>0.1754</td>
<td>0.0273</td>
<td>0.0000</td>
<td>0.3985</td>
<td>0.0622</td>
<td>0.0000</td>
</tr>
<tr>
<td>J statistic</td>
<td>29.9337</td>
<td></td>
<td></td>
<td>22.5087</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Instrumental variables: $z = (1; a_{m,t-1}, a_{m,t-2}, \beta_{t-1}, \beta_{t-2}, T_{t-1}, T_{t-2})$

at the 1% level. In addition, with a low J-statistic of 29.9337 for 1970-2004 and 22.5087 for 1980-2004, the over-identifying restriction of the model is empirically accepted. The birth rate coefficient (α_6) is estimated to be -0.5276 for 1970-2004 and -0.8024 for 1980-2004: the age of the median voter decreases as the birth rate increases. The average life expectancy coefficient (α_{17}) is estimated to be 0.1754 for 1970-2004 and 0.3985 for 1980-2004: the age of the median voter increases as the average life expectancy increases.

In summary, the individual coefficient estimates meet the theoretical sign conditions and are statistically significant. The J-statistic indicates that the over-identifying restriction of the model is empirically accepted. These results are robust to the sample periods. We conclude that our politico-economic model of the equilibrium tax rate is empirically supported by the data of G7 countries.

Next we estimate the following empirical model:

$$g_t = \alpha_8 + \alpha_5 \beta_t + \alpha_{10} \beta_t^2 + \alpha_{11} T_t \quad (\alpha_8 > 0, \alpha_{10} < 0, \alpha_{11} > 0).$$

Equation (5) has shown that the growth rate is increasing with the tax rate, and Proposition 3 has shown that the tax rate has an inverted U relationship with the birth rate. Hence we expect $\alpha_5 > 0$ and $\alpha_{10} < 0$. Moreover, Proposition 3 shows that an increase in the average life expectancy results in a higher tax rate. Hence, we expect $\alpha_{11} > 0$. In the empirical analysis, we use the following instrumental variables:

$$z = (1; g_{t-1}, g_{t-2}, \beta_{t-1}, \beta_{t-2}, T_{t-1}, T_{t-2}).$$
Results are summarized in Table 3. As for the birth rate, both coefficients are statistically significant at the 5% level and meet the theoretical sign conditions. α_9 is estimated to be 7.1147 for 1970-2004 and 17.7922 for 1980-2004, and α_{11} is estimated to be -0.2536 for 1970-2004 and -0.7239 for 1980-2004. An inverted U-shape relationship between the birth rate and the growth rate is consistent with the finding of Kelley and Schmidt (1995), An and Jeon (2006), and Li and Zhang (2007). The estimation result for 1970-2004 (1980-2004) indicates that the growth rate is maximized when the birth rate is 14.027 (12.289), and that the growth rate becomes 4.11%pts (3.79%pts) lower than the maximum if the birth rate is decreased to 10.000.\(^{20}\)

The coefficient of the average life expectancy (α_{11}) is estimated to be 0.0140 for 1970-2004 and 0.3412 for 1980-2004. Although the coefficient is not statistically significant for 1970-2004, it is significant for 1980-2004. These results indicate that the growth rate is an increasing function of the average life expectancy, which is consistent with Proposition 3.\(^{21}\)

4. Some Concluding Remarks

In this paper, we analyze the effect that demographic changes have on fiscal policy and growth in a politico-economic model where an equilibrium tax rate is determined by majority voting. Our model distinguishes itself from existing studies in the assumption regarding the time domain. The continuous-time framework adopted in the present paper allows us to cope with problematic features of the previous studies that originate in the use of the OLG framework. We believe that our modeling approach contributes to a deeper understanding of demographic issues facing developed economies.

In our analysis, we distinguish between two closely related aspects of demographic changes: (i) a longer life time of consumers, and (ii) a lower birth rate, both of which increase the old relative to the young people. Although these two aspects are captured by the expression “population aging”, we show that they have different effects on fiscal policy and growth. Key results are two-fold. First, when life expectancy rises, both taxes and growth increase. Second,

\(^{20}\) The birth rate for 1980/2004 is 15.4/10.9 for Canada, 14.8/12.7 for France, 10.1/8.6 for Germany, 11.8/9.7 for Italy, 13.5/8.7 for Japan, 13.4/12.0 for the UK, and 15.9/14.0 for the US.

\(^{21}\) The increase in the average life expectancy from 1980 to 2004 is 4.2 years for the US, 4.9 years for Canada, and between 5.2 and 6.0 years for other countries.

Table 3 Empirical Results

\(g_t = \alpha_0 + \alpha_9 B_t + \alpha_{10} B^{2}_t + \alpha_{11} T_t, \quad \alpha_0 > 0, \alpha_{10} < 0, \alpha_{11} > 0\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>α_9</td>
<td>7.1147</td>
<td>3.3817</td>
<td>0.0365</td>
<td>17.7922</td>
<td>4.0209</td>
<td>0.0000</td>
</tr>
<tr>
<td>α_{10}</td>
<td>-0.2536</td>
<td>0.1231</td>
<td>0.0404</td>
<td>-0.7239</td>
<td>0.1677</td>
<td>0.0000</td>
</tr>
<tr>
<td>α_{11}</td>
<td>0.0140</td>
<td>0.1446</td>
<td>0.9229</td>
<td>0.3412</td>
<td>0.1410</td>
<td>0.0167</td>
</tr>
<tr>
<td>J statistic</td>
<td>99.7853</td>
<td></td>
<td></td>
<td>85.4835</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Instrumental variables: $z = (1, g_{t-1}, g_{t-2}, B_{t-1}, B_{t-2}, T_{t-1}, T_{t-2})$.
there exists an inverted U relationship between the birth rate on one hand and taxes and growth on the other.

Furthermore, we examine whether or not data support theoretical predictions of our model. For this purpose, we use data from G7 countries. Our intention was to consider as many developed economies as data allowed in order to show the validity of our approach. Our empirical analysis clearly demonstrates that the model's predictions are observed in data. In addition, the robustness of our results is largely confirmed when the sample period is extended by 10 years.

Note that our empirical analysis represents the first attempt in the literature to show the link between demographic variables, taxes, and the median voter.

REFERENCES

Appendix A: Derivation of Ideal Tax Rate of Consumers of Age a

A.1 Preliminary

Consider the following incomplete gamma function

$$\gamma (n, x) \equiv \int_{0}^{x} m^{n-1} e^{-m} dm = \langle n-1 \rangle! \left(1 - e^{-x} \sum_{k=0}^{n-1} \frac{x^k}{k!} \right)$$

(23)

where n is an integer. (23) has the following properties

$$\gamma (1, x) > \gamma (2, x) > \frac{\gamma (3, x)}{2}, \quad \gamma (2, x) - \gamma (3, x) = e^{-x} \left(x^2 + x + 1 - e^x \right) > 0, \quad (24)$$

Using those equations and defining $x = (\rho + \beta - A \tau) (T - a)$, one can write

$$F (\tau; a) = \frac{T - a}{x} \gamma (1, x),$$

$$F_{\tau} (\tau; a) = A \left(\frac{T - a}{x} \right)^2 \gamma (2, x),$$

$$F_{\tau\tau} (\tau; a) = A^2 \left(\frac{T - a}{x} \right)^3 \gamma (3, x).$$

(25)

A.2 First-order and Second-order Conditions

Making use of (25), the FOC (11) can be rewritten as
\[
\frac{A (1 - \tau^*)}{\rho + \beta - A \tau^*} = \frac{\gamma (1, x^*)}{\Phi (\tau^*)} > 1 \quad (26)
\]

where \(x^* = (\rho + \beta - A \tau^*) (T - a)\) and the inequality is due to (24). To ensure the existence of an interior equilibrium, assume \(\Phi (0) = A/ (\rho + \beta) > 1\), due to which one can easily confirm \(\Phi' (\tau) > 0\) with
\[
\Phi (\tau) \in \left(\frac{A}{\rho + \beta}, \infty \right) \quad \text{for} \quad \tau \in \left(0, \frac{\rho + \beta}{A} \right). \quad (27)
\]

The second-order condition is
\[
\frac{\partial^2 U_a}{\partial^2 \tau} \bigg|_{\tau = \tau^*} = \frac{G(t)}{L(t)} \left[(1 - \tau^*) F_{\tau \tau} (\tau^*) - 2 F_{\tau} (\tau^*) \right]
\]
\[
= \frac{G(t)}{L(t)} A \left(\frac{T - a}{x^*} \right)^2 \left[\Phi (\tau^*) \gamma (3, x^*) - 2 \gamma (2, x^*) \right]
\]
\[
= \frac{G(t)}{L(t)} A \left(\frac{T - a}{x^*} \right)^2 \left[\frac{\gamma (1, x^*)}{\gamma (2, x^*)} \gamma (3, x^*) - 2 \gamma (2, x^*) \right] \quad (28)
\]
\[
= - \frac{G(t)}{L(t)} \left(\frac{T - a}{x^*} \right)^2 \frac{2A}{\gamma (2, x^*)} \times \left[\gamma (2, x^*) (1 - \gamma (1, x^*)) + e^{-x^*} \left(\frac{x^*}{2} \right)^2 \gamma (1, x^*) \right] < 0
\]

where the second equality uses (25), the third equality uses (26) and the last equality uses
\[
\gamma (3, x) = 2 \gamma (2, x) - e^{-x} x^2. \quad (29)
\]

A.3 Existence of \(\tau^*\)

From the FOC (11),
\[
\frac{\partial MC (\tau)}{\partial \tau} = F_{\tau} (\tau) = A \left(\frac{T - a}{x} \right)^2 \gamma (2, x) > 0, \quad (30)
\]
\[
\frac{\partial MB (\tau)}{\partial \tau} = (1 - \tau) F_{\tau \tau} (\tau) - F_{\tau} (\tau)
\]
\[
= \left(\frac{T - a}{x} \right)^2 A \left[\Phi (\tau) \gamma (3, x) - \gamma (2, x) \right]
\]
\[
= \left(\frac{T - a}{x} \right)^2 A \left[\frac{\gamma (1, x)}{\gamma (2, x)} \gamma (3, x) - \gamma (2, x)^2 \right] \quad (31)
\]
\[
= \left(\frac{T - a}{x} \right)^2 \frac{A e^{-x}}{\gamma (2, x)} \left[\gamma (2, x) + x^2 \gamma (1, x) \right] > 0
\]

where the second line of (31) uses (25), and the third line is due to (26) and the last line can be
obtained after rearrangement. Now, (28) can be rewritten as
\[
\frac{\partial^2 U_3}{\partial \tau^2} \bigg|_{\tau = \tau^*} = \frac{G(L)}{L} \left(\frac{\partial MB(\tau)}{\partial \tau} - \frac{\partial MC(\tau)}{\partial \tau} \right) \bigg|_{\tau = \tau^*} < 0,
\]
which means that the \(MB \) curve is less steep than the \(MC \) curve at the ideal tax rate of consumers of age \(a \), as depicted in Figure 1. Given these results, an odd number of intersection points between the \(MB \) and \(MC \) curves exist if the following conditions hold:
\[
\frac{A \gamma(2, x_0)}{(\rho + \beta)^2} \equiv MB(0) > MC(0) \equiv \frac{\gamma(1, x_0)}{\rho + \beta},
\]
\[
\frac{[A - (\rho + \beta)(T - a)]^2}{2} \equiv MB \left(\frac{\rho + \beta}{A} \right) < MC \left(\frac{\rho + \beta}{A} \right) \equiv T - a
\]
where \(x_0 = (\rho + \beta)(T - a) \). An interior solution requires the following parameter restriction, which is derived from (33):
\[
(\rho + \beta) \left(1 + \frac{2}{x_0} \right) > A > (\rho + \beta) \frac{\gamma(1, x_0)}{\gamma(2, x_0)}.
\]
This condition is assumed to hold in the main text.

A.4 Uniqueness of \(\tau^* \)

Using the definition of \(x \), the FOC (11) can be rewritten as
\[
[A - (\rho + \beta)](T - a) = x \left(\frac{\gamma(1, x)}{\gamma(2, x)} - 1 \right).
\]
Moreover,
\[
\frac{d}{dx} \left(x \left(\frac{\gamma(1, x)}{\gamma(2, x)} - 1 \right) \right) = -\frac{e^{-x}x}{\gamma(2, x)} \left(x \frac{\gamma(1, x)}{\gamma(2, x)} - 2 \right) < 0.
\]
To confirm the sign, note that
\[
\frac{d}{dx} \left(x \frac{\gamma(1, x)}{\gamma(2, x)} \right) = \frac{\Delta(x)}{\gamma(2, x)^2} > 0, \quad \lim_{x \to 0} x^\gamma(1, x) = 2
\]
where
\[
\Delta(x) \equiv (\gamma(1, \gamma) + e^{-\frac{x}{2}}x) \left(\gamma(1, x) - e^{-\frac{x}{2}}x \right) > 0
\]
and \(\gamma(1, x) - e^{-\frac{x}{2}}x \) is positive because it is monotonically increasing and equal to zero at \(x = 0 \). Therefore, (36) implies that a unique \(x \) exists, hence the ideal tax rate of consumers of age \(a \) is unique.

Appendix B: Proof of Proposition 1

Result (a)

Totally differentiating (11) gives
\[
\frac{d\tau}{d(T-a)} = \frac{[(1-\tau)A(T-a) - 1]e^{-x}}{1-\tau)F_{\tau\tau}(\tau) - 2F_{\tau}(\tau)} > 0
\]
\text{(39)}

where the denominator is negative due to (28). To show that the numerator is positive, rewrite it as

\[
[(1-\tau)A(T-a) - 1]e^{-x} = \left(\frac{F(\tau)}{F_{\tau}(\tau)}A(T-a) - 1\right)e^{-x} \\
= \left[x - \left(1 - e^{-x}\right)\right] e^{-x} > 0
\]
\text{(40)}

where the first equality is due to (11) and the second equality makes use of (25).

Results (b) and (c)

Define \(\sigma = \rho + \beta\). Note that we can write

\[
\frac{dF(\tau)}{d\sigma} = -\frac{F_{\tau}(\tau)}{A}, \quad \frac{dF_{\tau}(\tau)}{d\sigma} = -\frac{F_{\tau\tau}(\tau)}{A}.
\]
\text{(41)}

Using these equations, totally differentiate (11) to obtain

\[
\frac{\partial \tau}{\partial \sigma} = -\frac{(1-\tau)F_{\tau\tau}(\tau) - F_{\tau}(\tau)}{A[(1-\tau)F_{\tau\tau}(\tau) - 2F_{\tau}(\tau)]} < 0.
\]
\text{(42)}

The denominator is negative due to (28) and the numerator is negative since

\[
(1-\tau)F_{\tau\tau}(\tau) - F_{\tau}(\tau) = \left(\frac{T-a}{x}\right)^2 \frac{\gamma(1,x')\gamma(3,x) - \gamma(2,x)^2}{\gamma(2,x)} \\
= -\left(\frac{T-a}{x}\right)^2 \frac{\Delta(x)}{\gamma(2,x')} < 0
\]
\text{(43)}

where the first equality uses (25) and the last equality is due to (38).

Result (d)

Note that

\[
\frac{dF(\tau)}{dA} = -\frac{\tau}{A}F_{\tau}(\tau), \quad \frac{dF_{\tau}(\tau)}{dA} = -\frac{\tau}{A}F_{\tau\tau}(\tau).
\]
\text{(44)}

Then, totally differentiating (11) yields

\[
\frac{d\tau}{d(T-a)} = \frac{\tau[(1-\tau)F_{\tau\tau}(\tau) - F_{\tau}(\tau)]}{A[(1-\tau)F_{\tau\tau}(\tau) - 2F_{\tau}(\tau)]} > 0
\]
\text{(45)}

where the denominator is negative due to (28) and the numerator is also negative because of (43).
Appendix C: Proof of Proposition 2

Result (a)
Differentiating (15) w.r.t. T gives

$$\frac{\partial a_m}{\partial T} = \frac{e^{-\beta T}}{1 + e^{-\beta T}} > 0. \quad (46)$$

Result (b)
Differentiating w.r.t. β yields

$$\frac{\partial a_m}{\partial \beta} = -\beta^{-2} \ln \frac{2}{1 + e^{-\beta T}} - \beta^{-1} \frac{T e^{-\beta T}}{1 + e^{-\beta T}} < 0. \quad (47)$$

Appendix D: Proof of Proposition 3

D.1 Results (a), (c), and (d)
Graphical analysis is sufficient to establish the results. Result (a) holds due to (a) of Corollary 1, which is represented by a rightward shift of the (17) curve. Regarding ρ and A, they do not affect the (17) curve, and we only need to consider the impact of those parameters on the (12) curve. Results (c) and (d) of Proposition 1 imply that the (12) curve shifts downward and upward, respectively.

D.2 Result (b)
It is easier to consider τ^* which is defined by (11) and (15), which gives

$$(1 - \tau^*) F_{\tau^*} (\tau^*, a_m (\tau^*)) = F (\tau^*, a_m (\tau^*)). \quad (48)$$

This equation implicitly defines $\tau^* = \tau (\beta)$. Totally differentiating this equation yields

$$\tau' (\beta) \equiv \frac{d\tau^*}{d\beta} = -\frac{(1 - \tau^*) \frac{\partial F_{\tau^*} (\tau^*)}{\partial \beta} - \frac{\partial F (\tau^*)}{\partial \beta}}{(1 - \tau^*) F_{\tau^*} (\tau^*) - 2 F_{\tau} (\tau^*)} \quad (49)$$

where $a_m (\tau^*)$ in $F (\tau^*, a_m (\tau^*))$ and $F_{\tau} (\tau^*, a_m (\tau^*))$ is suppressed for simplicity. Defining $x^* = (\rho + \beta - A \tau^*) (T - a_m)$, rewrite two terms in the numerator as

$$\frac{\partial F (\tau^*)}{\partial \beta} = -\frac{F_{\tau} (\tau)}{A} - e^{-x_m} \frac{\partial a_m}{\partial \beta};$$

$$\frac{\partial F_{\tau} (\tau^*)}{\partial \beta} = -\frac{F_{\tau\tau} (\tau)}{A} - A (T - a_m) e^{-x_m} \frac{\partial a_m}{\partial \beta}. \quad (50)$$

Then, using (25) and (50), we can rewrite the numerator of (49) as
\[(1 - \tau^*) \frac{\partial F_r (\tau^*)}{\partial \beta} - \frac{\partial F (\tau^*)}{\partial \beta} = - \frac{(1 - \tau^*) F_{r \tau} (\tau^*) - F_r (\tau^*)}{A} \times \]

\[
\left[A \frac{T - a_m}{x^*} \gamma (3, x^*) - \gamma (2, x^*) \right] - \left[\frac{(1 - \tau^*) A}{\beta + \beta - A \tau^* x^*} - 1 \right] e^{-x^*} \frac{\partial a_m}{\partial \beta} \]

\[
= - \left(\frac{T - a_m}{x^*} \right)^2 \frac{\Delta (x^*)}{\gamma (2, x^*)} - \frac{Y (x^*)}{\gamma (2, x^*)} e^{-x^*} \frac{\partial a_m}{\partial \beta}
\geq 0 \] \hspace{1cm} (51)

where

\[Y (x^*) = x^* \gamma (1, x^*) - \gamma (2, x^*) = x^* - \left(1 - e^{-x^*} \right) > 0. \] \hspace{1cm} (52)

Since \(\frac{\partial a_m}{\partial \beta} < 0 \), the sign of (51) is ambiguous, suggesting the possibility of a non-monotonic relationship between \(\tau \) and \(\beta \) (i.e. the existence of a stationary point at \(\partial \tau / \partial \beta = 0 \)). To explore this possibility, consider the following points.

D.2.a Slope at Vertical Intercept

We evaluate (49) at \(\beta = 0 \), i.e. \(\tau' (0) \). Define

\[x_\beta \equiv (\rho - A \tau^*) (T - a_m) = \frac{(\rho - A \tau) T}{2} \] \hspace{1cm} (53)

at \(\beta = 0 \). Then, the numerator of (49) at \(\beta = 0 \) is

\[(1 - \tau) \frac{\partial F_r}{\partial \beta} \bigg|_{\beta=0} = \frac{(T/2 x_\beta)^2}{\gamma (3, x_\beta)} \left[2 - \frac{\gamma (1, x_\beta)}{\gamma (2, x_\beta)} + 1 + x_\beta \frac{\gamma (1, x_\beta)}{\gamma (2, x_\beta)} \left(\frac{\gamma (2, x_\beta)}{\gamma (3, x_\beta)} - \frac{1}{2} \right) \right]. \] \hspace{1cm} (54)

To evaluate the sign of this expression, note that

\[\frac{\gamma (1, x_\beta)}{\gamma (2, x_\beta)} = \frac{1}{x_\beta} \left(2 - \frac{\gamma (3, x_\beta)}{\gamma (2, x_\beta)} \right) + 1, \] \hspace{1cm} (55)

which allows us to rewrite (54) as

\[(1 - \tau) \frac{\partial F_r}{\partial \beta} \bigg|_{\beta=0} = \frac{(T/2)^2}{x_\beta^2 \gamma (3, x_\beta)} \left(\alpha_1 x_\beta^2 + \alpha_2 x_\beta + \alpha_3 \right) \] \hspace{1cm} (56)

where

\[\alpha_1 \equiv \eta, \quad \alpha_2 \equiv - \left(2 - \eta - \eta^2 \right), \quad \alpha_3 \equiv -2 (2 - \eta) \eta, \quad \eta \equiv 2 - \frac{\gamma (3, x_\beta)}{\gamma (2, x_\beta)}. \] \hspace{1cm} (57)

Note that \(2 > \eta > 0 \) for \(0 < x < \infty \). Moreover, rearrangement of (35) at \(\beta = 0 \) gives
which allows us to rewrite η as

$$\eta \equiv (A - \rho) \frac{T}{2},$$

(59)

Therefore, (56) is zero when

$$x_\beta (\eta) = \frac{-\alpha_2 + \sqrt{\alpha_2^2 - 4\alpha_1\alpha_3}}{2\alpha_1} > 0 \quad \text{for} \quad 2 > \eta > 0,$$

(60)

This means that (56) is positive for $x_\beta > x_\beta (\eta)$. Given that the denominator of (49) is negative, we have $dT^*/d\beta > 0$ for $x_\beta > x_\beta (\eta)$.

D.2.b Horizontal Intercept

Here we show the existence of $\tilde{\beta} > 0$ such that $0 = \tau (\tilde{\beta})$. Define $\tilde{x}_0 \equiv (\rho + \tilde{\beta}) (T - a_m (\tilde{\beta}))$, so that (48) is rewritten as

$$A \frac{\gamma (1, \tilde{x}_0)}{\gamma (2, \tilde{x}_0)} \Bigg|_{LHS} = \frac{\gamma (1, \tilde{x}_0)}{\gamma (2, \tilde{x}_0)} \Bigg|_{RHS}$$

(61)

at $\tau = 0$. Vary T from zero to infinity, holding $\tilde{\beta}$ constant. Then, note that

$$T \in (0, \infty) \quad \Rightarrow \quad T - a_m \in (0, \infty) \quad \Rightarrow \quad \tilde{x}_0 \in (0, \infty).$$

(62)

Now, LHS is linear in $T - a_m$ and starts from the origin in Figure 4. RHS is monotonically increasing in $T - a_m$ and is greater than 2 (see (37)). Taking a difference between the slopes of LHS and RHS gives

$$\frac{dLHS}{dT - a_m} - \frac{dRHS}{dT - a_m} = A - \left[(\rho + \tilde{\beta}) \frac{\gamma (1, \tilde{x}_0)}{\gamma (2, \tilde{x}_0)} + \tilde{x}_0 \frac{d}{d\tilde{x}_0} \frac{\gamma (1, \tilde{x}_0)}{\gamma (2, \tilde{x}_0)} \frac{d\tilde{x}_0}{dT - a_m} \right]$$

(63)

where the second line uses $\frac{A}{\rho + \tilde{\beta}} = \frac{\gamma (1, \tilde{x}_0)}{\gamma (2, \tilde{x}_0)}$, which must hold for utility maximization (see (26)). To sign (63), calculate the following derivative:

$$\frac{d}{d\tilde{x}_0} \left(\frac{\gamma (1, \tilde{x}_0)}{\gamma (2, \tilde{x}_0)} \right) = -e^{-\tilde{x}_0} \tilde{x}_0 \left(1 - e^{-\tilde{x}_0} \right) < 0.$$

(64)

Given that (63) is positive, there must be a unique intersection point between LHS and RHS, which defines a unique $T = a_m$. Moreover, given that $T = a_m$ and $\tilde{\beta}$ have a one-to-one relationship, there must be a unique $\tilde{\beta} > 0$.

Appendix E: Data

Data on the real GDP growth rate is taken from “SourceOECD OECD Economic Outlook No 80.” The tax burden ratio, defined as the ratio of total tax revenue to nominal GDP, is obtained from “SourceOECD Revenue Statistics of OECD Member Countries.” The age of the median voter is calculated using “Demographic Yearbook Historical supplement” published by the United Nations (for Canada, France, Italy, and the UK), the US Census Bureau website (for Canada, France, and the US), Federal Statistical Office GENESIS-Online Statistical Information System (for Germany), National Institute of Statistics website (for Italy), “Population Census” and “Annual Report on Current Population Estimates” published by Ministry of Public Management, Home Affairs, Posts and Telecommunications (for Japan), and National Statistics Online (for the UK). The birth rate is taken from “SourceOECD OECD Health Data 2006.” The life expectancies data is from “SourceOECD OECD Health Data 2006” (for Canada, France, Germany, Italy, Japan, and the US), “Demographic Yearbook Historical supplement” published by the United Nations (for Canada and Italy), and National Statistics Online (for the UK).