<table>
<thead>
<tr>
<th>Title</th>
<th>Development of a Diagnostic PCR Assay Targeting the Mn-Dependent Superoxide Dismutase Gene (sodA) for Identification of Streptococcus galolyticus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sasaki, Eiki / Osawa, Ro / Nishitani, Yosuke / Whiley, Robert A.</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Clinical Microbiology, 42(3):1360-1362</td>
</tr>
<tr>
<td>Issue date</td>
<td>2004-03</td>
</tr>
<tr>
<td>Resource Type</td>
<td>Journal Article / 学術雑誌論文</td>
</tr>
<tr>
<td>Resource Version</td>
<td>publisher</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1128/JCM.42.3.1360-1362.2004</td>
</tr>
<tr>
<td>URL</td>
<td>http://www.lib.kobe-u.ac.jp/handle_kernel/90000326</td>
</tr>
</tbody>
</table>
Development of a Diagnostic PCR Assay Targeting the Mn-Dependent Superoxide Dismutase Gene (sodA) for Identification of \textit{Streptococcus gallolyticus} \\

\begin{flushleft}
Eiki Sasaki,1 Ro Osawa,1,* Yosuke Nishitani,1 and Robert A. Whiley2
\end{flushleft}

\textit{Department of Bioscience, Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe 657-8501, Japan,} 1 and \textit{Department of Clinical and Diagnostic Oral Sciences, Barts and The London, Queen Mary’s School of Medicine and Dentistry, London E1 2AD, United Kingdom} 2

Received 12 August 2003/Returned for modification 10 November 2003/Accepted 3 December 2003

\begin{abstract}
A PCR-based assay to identify \textit{Streptococcus gallolyticus} has been developed. The assay uses an oligonucleotide primer pair targeting a partial sequence of the manganese-dependent superoxide dismutase gene (\textit{sodA}). The assay distinguished members of the \textit{S. gallolyticus} group from other, closely related taxa successfully by yielding a 408-bp specific amplicon.
\end{abstract}

\textit{Streptococcus gallolyticus} is often found as a normal member of the gut microflora of various animals (15), while it has been reported to cause mastitis in cattle (8), septicemia in pigeons (3), and meningitis, sepsis, and endocarditis in humans (2, 4, 12). There have also been a number of case reports that suggest an etiological link between underlying infection with this organism and colon cancers in human (1, 5, 9, 10, 11). Most, if not all, of the strains belonging to this species are able to decarboxylate gallate as well as produce tannase, by which a hydrolyzable tannin (i.e., gallotannin) is hydrolyzed to release gallic acid, which is subsequently decarboxylated to pyrogallol (14). The species, which includes strains formerly identified as \textit{S. bovis} biotypes I and II/2, can be distinguished from other, related taxa or biotypes (i.e., \textit{S. equinus}, \textit{S. bovis} biotype II/1) on the basis of the results of DNA-DNA reassociation experiments (14). In a recent taxonomic review, Facklam (6) has suggested that all human isolates of \textit{S. bovis} biotypes I and II/2 are officially identified as \textit{S. gallolyticus}. Nevertheless, the use of the name \textit{S. bovis} biotype I or II/2 instead of \textit{S. gallolyticus} has been a common occurrence in clinical microbiology despite the clearly established status of the latter name (14). This situation seems to have come about in order to avoid confusion among clinical microbiologists. Recently, Poyart et al. (18) demonstrated that a partial sequence of the manganese-dependent superoxide dismutase gene (\textit{sodA}) provides useful information for the differentiation of species of the so-called \textit{S. bovis-\textit{S. equinus}} group. Here we evaluated the use of a PCR-based method for identification of \textit{S. gallolyticus} that uses a primer pair targeting \textit{sodA} by using strains of the \textit{S. bovis-\textit{S. equinus}} group from our culture collection with known DNA-DNA homology status.

Twenty-three streptococcal strains that had been previously designated \textit{S. gallolyticus} (14) and seven strains that had been assigned by Farrow et al. (7) to \textit{S. equinus} were used in the present study. Whole genomic DNA-DNA homology had been used previously (14) to determine the taxonomic position of

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{alignment.png}
\caption{Alignments of the \textit{sodA} gene DNA sequences used in the present study and retrieved from the GenBank database (\textit{S. gallolyticus} CIP1054281 [GenBank accession no. AJ297183], \textit{S. bovis} CIP102302 [GenBank accession no. Z95903], and \textit{S. equinus} 1025041 [GenBank accession no. Z95989]). Boldface letters indicate the positions of the primers in the sequences. The hyphens indicate the same bases as shown in \textit{S. gallolyticus} CIP102302.}
\end{figure}
these strains, in which the relative percent DNA binding of each strain with S. gallolyticus ACM 3611T was measured (Table 1). The S. gallolyticus strains consisted of 12 fecal or rumen isolates from various animals and 11 clinical isolates from cases of cow mastitis and human septicemia or endocarditis. It should be noted that the seven S. equinus strains included five strains originally received as S. bovis. All strains were cultured at 37°C on Columbia blood agar (Oxoid Ltd., Basingstoke, United Kingdom) with 5% defibrinated horse blood prior to use. The strains were characterized for their biochemical properties with a commercial identification kit (API 20 Strep; bioMérieux, Lyon, France). Tannase and gallic acid decarboxylating activities were determined by visual methods described elsewhere (16, 17).

The sodA gene sequences of S. gallolyticus CIP105428T (GenBank accession no. AJ297183), S. bovis CIP102302 (GenBank accession no. Z95893), and S. equinus 102504T (GenBank accession no. Z95903) from the GenBank database were aligned and scanned for variable regions that could provide a suitable primer set specific to S. gallolyticus (Fig. 1). On the basis of this analysis, forward primer SgsodA-F (5'-CAATGA CAATTCACCATGA-3'; positions 17 to 34) and reverse primer SgsodA-R (5'-TTGGTGCTTTTCTCGTG-3'; positions 424 to 407) were designed as shown in Fig. 1. With this primer set, PCR amplification was performed in a total volume of 20 μl. Whole genomic DNA from each isolate was prepared by the method of Marmur (13). Two microliters of each genomic DNA preparation (10 ng of DNA/μl of Tris-EDTA) was added to the PCR master mixture, which consisted of 2 μl of 10× PCR buffer (Mg²⁺ free; Promega Corporation, Madison, Wis.), 2 μl of 25 mM MgCl₂, 0.4 μl of a 10 mM deoxyribonucleoside triphosphate mixture, 0.5 μl of each primer (10 pmol/μl), and 0.1 μl (0.5 U) of Taq DNA polymerase (Promega), with the remaining volume consisting of distilled water. A GeneAmp PCR System 2700 thermal cycler (Applied Biosystems, Foster City, Calif.) was used for PCR amplification consisting of an initial denaturation at 94°C for 5 min; 30 cycles of denaturation at 94°C for 60 s, annealing at 54°C for 30 s, and extension at 72°C for 30 s; and a final extension at 72°C for 7 min. Five microliters of the PCR products was electrophoresed on 2% agarose gels, stained with ethidium bromide (0.25 μg/ml), and photographed under UV light.

The PCR yielded an amplicon of 408 bp from all 23 S. gallolyticus strains, while other S. bovis-equinus strains did not (Table 1), suggesting that the assay is a useful molecular tool for the identification of S. gallolyticus. Further work with more
strains of *S. gallolyticus* and other, related species is in progress in order to confirm the reliability of the PCR-based method as a diagnostic tool. With recently accumulating evidence of its taxonomic distinction and its etiological significance, we propose that the name *S. gallolyticus* be adopted for use by clinical microbiologists.

REFERENCES