<table>
<thead>
<tr>
<th>タイトル / Title</th>
<th>Fermi surfaces of PrOs₄Sb₁₂ based on the LDA+U method</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者 / Author(s)</td>
<td>Harima, Hisatomo / Takegahara, Katsuhiko</td>
</tr>
<tr>
<td>掲載誌・巻号・ページ / Citation</td>
<td>Physica B: Condensed Matter, 359-361:920-922</td>
</tr>
<tr>
<td>刊行日 / Issue date</td>
<td>2005-04</td>
</tr>
<tr>
<td>資源タイプ / Resource Type</td>
<td>Journal Article / 学術雑誌論文</td>
</tr>
<tr>
<td>版区分 / Resource Version</td>
<td>author</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1016/j.physb.2005.01.263</td>
</tr>
<tr>
<td>JaLCDOI</td>
<td>http://www.lib.kobe-u.ac.jp/handle_kernel/90000876</td>
</tr>
</tbody>
</table>

PDF issue: 2021-03-29
Fermi surfaces of PrOs$_4$Sb$_{12}$ based on the LDA+U method

Hisatomo Harimaa, Katsuhiko Takegaharab

aDepartment of Physics, Kobe University, 657-8501 Kobe, Japan
bDept. of Materials Sci. and Tec., Hirosaki University, 036-8561 Hirosaki, Japan

Abstract

Fermi surfaces of PrOs$_4$Sb$_{12}$ are investigated based on the LDA+U method with many U values. The 4f^2 electrons in PrOs$_4$Sb$_{12}$ are experimentally suggested to be localized, in contrast with other heavy fermion superconductors. This study has revealed that the 4f^2 electrons remain localized with small $U = 0.4\text{Ry}$, then become itinerant with $U = 0.05\text{Ry}$, where the topology of the Fermi surfaces are changed and no longer explains the dHvA measurement.

Key words: PrOs$_4$Sb$_{12}$, LDA+U method, Fermi surface

The filled skutterudite compounds with a general formula RT_4X_{12} (R= Rare earth, Th and U; T= Fe, Ru and Os; X= P, As and Sb) have recently attracted much attention for the variety of the electrical and magnetic properties. Among them, PrOs$_4$Sb$_{12}$ has been reported to undergo superconductivity at $T_c = 1.85\text{K}$ with the large electronic specific heat coefficient $\gamma = 350 - 700\text{mJ/mol K}^2$.[1,2]. Unconventional superconducting properties have been reported from the thermal conductivity,[3], the NMR measurement[4] and the μSR measurement[5]. In applied magnetic fields, another ordered phase appears above the upper critical field [6]. The neutron measurement has suggested that quadrupole interactions should play a crucial role in the field induced ordered phase[7].

The measurements of the de Haas-van Alphen (dHvA) effects have revealed that the topology of Fermi surface (FS) of PrOs$_4$Sb$_{12}$ is very similar to that of the reference compound LaOs$_4$Sb$_{12}$.[8] It indicates that the 4f^2 electrons in PrOs$_4$Sb$_{12}$ are well localized, in contrast with other heavy fermion superconductors. The LDA+U method can treat such localized electrons in a unfilled shell within a band picture. The ground state of 4f^2 in PrOs$_4$Sb$_{12}$ suggested to be a singlet and such the localized singlet ground state can be obtained without any symmetry breaking. In fact, the FSs obtained by the LDA+U method with a parameter $U = 0.4\text{Ry}$, have explained well the angular dependence of the dHvA experiments.[8] In the bandstructure, 4f^2 electrons are located below the Fermi level and well localized. Therefore, the density of states at the Fermi level contains only a small amount of f component (a few %), though the measured cyclotron masses are largely enhanced in PrOs$_4$Sb$_{12}$. Then the question arises how the U value affects the topology of the FSs and the mass enhancement. In this study, the U dependence of the electronic bandstructures have been investigated. Calculations with $U = 0.4\text{Ry}, 0.3\text{Ry}, 0.2\text{Ry}, 0.1\text{Ry}, 0.05\text{Ry}$ and 0Ry (LDA) have been performed self-consistently.

Figure 1 (a) shows the bandstructure in the vicinity of the Fermi level with $U = 0.4\text{Ry}$, which is very similar to the case of non f reference LaOs$_4$Sb$_{12}$.[9] The hole FSs around the N points is observed as the γ branch, and the cyclotron masses are the most largely enhanced.[8] As shown in Fig. 1 (b), the bandstructure near the Fermi level remains unchanged with down to $U = 0.10\text{Ry}$. The electronic specific heat coefficient (the density of states at the Fermi level) γ is 43.3 mJ/mol-K2 and the f-component is still less than 10%. As shown in Fig. 2 (a), the main part of the f-
components are located well below and above the Fermi level, so the f-electrons are regarded as still localized.

When U is set as 0.05Ry, the FSs are topologically changed, i.e. the hole FSs around the N points disappear. The f-components are situated on the Fermi level, then affect the FSs (see Fig. 1(c) and Fig. 2(b)). This corresponds the f-itinerant picture. The γ value becomes large as 81.5 mJ/mol-K^2 in which the f-component is about 50%. However, the FSs containing such large f-component could not explain the angular dependence of the dHvA measurements.

This work was supported by a Grant-in-Aid for Scientific Research in Priority Area \star Skutterudite \star (No.15072204) of MEXT in Japan.

Fig. 1. The LDA+U bandstructures for PrOs$_4$Sb$_{12}$ with $U = 0.40\text{Ry}$ (a), $U = 0.10\text{Ry}$ (b) and $U = 0.05\text{Ry}$ (c). Note that the topology of FSs are changed between (b) and (c).

Fig. 2. The LDA+U density of states for PrOs$_4$Sb$_{12}$ with $U = 0.10\text{Ry}$ (a) and $U = 0.05\text{Ry}$ (b). f-components are indicated by grey parts.

References