<table>
<thead>
<tr>
<th>タイトル</th>
<th>Thermochromic and solvatochromic Nafion films incorporating cationic metal-chelate complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>Funasako, Yusuke / Mochida, Tomoyuki</td>
</tr>
<tr>
<td>掲載誌・巻号・ページ</td>
<td>Chemical Communications,49:4688-4690</td>
</tr>
<tr>
<td>刊行日</td>
<td>2013-04-05</td>
</tr>
<tr>
<td>資源タイプ</td>
<td>Journal Article / 学術雑誌論文</td>
</tr>
<tr>
<td>版区分</td>
<td>author</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1039/c3cc41399c</td>
</tr>
<tr>
<td>JaLCDOI</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://www.lib.kobe-u.ac.jp/handle_kernel/90001835</td>
</tr>
</tbody>
</table>

PDF issue: 2018-10-28
Thermochromic and Solvatochromic Nafion Films Incorporating Cationic Metal-Chelate Complexes†

Yusuke Funasako and Tomoyuki Mochida*

Received (in XXX, XXX) Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXXX 20XX
DOI: 10.1039/b000000x

Nafion films incorporating cationic nickel complexes [Ni(acac)(R,en)]⁺ (acac = acetylacetonato, R,en = tetraalkylethylenediamine) have been prepared that exhibit chromic behaviors in response to temperature changes and solvent molecules in the vapor and liquid phases.

Nafion is a perfluorinated ion-exchange polymer bearing a sulfonic group on the side-chain. To date, many studies have been conducted on its use in fuel cells,† sensors,‡ and catalytic reactions. The sulfonic proton in the polymer can be replaced with metal ions and cationic molecules. Based on this, several functional Nafion films containing metal complexes have been prepared, which exhibit catalytic activity,§ spin-crossover phenomena,‖ vapoluminescence,¶ and electrocromism.‖ In this study, to prepare multifunctional films that exhibit thermochromic and solvatochromic properties, chromic metal complexes have been incorporated into Nafion. The square-planar mixed-chelate complexes [M(acac)(R,en)]⁺ (M = Cu, Ni; acac = acetylacetonate; R,en = N,N,N',N'-tetraalkylethylenediamine) are well-known solvatochromatic cations. Their color varies depending on the coordination ability (DN, donor number) of the solvents they are dissolved in, due to changes in the d-d orbital splitting caused by solvent coordination (Fig. 1). Solutions of these Ni(II) complexes in solvents of moderate DN also exhibit thermochromism. Recently, we prepared ionic liquids from cationic complexes, which exhibit vapoluminescence and physical property changes in response to vapor molecules. In this paper, we report the preparation and properties of Nafion films incorporating [Ni(acac)(Me₂Ren)]⁺ (1: R = Bu, 2: R = Me; Fig. 1), which show thermochromism, vapoluminescence, and solvatochromism.

Fig. 1 The reversible coordination of solvent molecules (X) to [Ni(acac)(Me₂Ren)]⁺ (1: R = Bu, 2: R = Me).

A light green transparent film incorporating 1 was prepared by immersing Nafion film (Na⁺ form) in a methanol solution of 1. The obtained film ([1-3MeOH]–Nafion) contained 8–10 equimolar methanol per cation. Leaving this film in ambient conditions or drying for 1 h under vacuum leads to the partial loss of methanol to give a light brown film ([1-3MeOH]–Nafion), which contains about three methanol molecules per cation. Further drying of this film at 130 °C under vacuum leads to the complete loss of methanol to give a red film ([1]–Nafion). The observed color change from light green to red by desorption of methanol is seen when the methanol-coordinated octahedral structure changes to the square-planar structure. The sulfonic group in the film is not coordinated to the complex because of its weak coordination ability, estimated to lie between BF₄⁻ and ClO₄⁻. A blue film of [2-3MeOH]–Nafion containing 2 was obtained by the same procedure.†

[1-3MeOH]–Nafion also exhibits thermochromism. The color of the film was light green at ~20 °C, light brown at 20 °C and orange at 70 °C (Fig. 2a), and the color change was reversible below 80 °C (†ESI, Fig. S1). The thermochromism is based on the coordination equilibrium of 1 in the film. The dependence of the UV-vis spectra of [1-3MeOH]–Nafion on temperature is shown in Fig. 2b. The absorption maxima of the spectra at low temperatures (λmax = 640 and 1050 nm) and at high temperatures (λmax = 490 nm) are characteristic of the octahedral and square-planar species of 1, respectively. As shown in the inset of Fig. 2b, the molar ratio of the latter species (x₄⁺) increases above 0 °C. The thermochromism is tunable by ligand modification. [2-3MeOH]–Nafion was blue at 20 °C and changed to red at around 70 °C (†ESI, Fig. S2). The difference in color and the color change temperature range, as seen in the inset in Fig. 2b, are attributed to the smaller steric hindrance around the ligand in 2. Incorporation of DMSO (DN = 29.8) instead of methanol (DN = 19.0) produced a light green film [1-nDMSO]–Nafion, which showed no thermochromism because of strong coordination of DMSO. Heating [1-3MeOH]–Nafion above 80 °C led to desorption of the methanol to give [1]–Nafion, which no longer exhibited thermochromism.

The dry film [1]–Nafion exhibited color changes in response to donor molecules. The color changed from red to light green under a saturated vapor of methanol over 1 h and in a few days in humid air. The color change occurred in a few minutes when the film was directly immersed in methanol (Fig. 3), and similar responses were observed in other polar solvents such as water (DN = 18), DMF (DN = 26.6), and DMSO (DN = 29.8) (†ESI, Fig. S3); DMSO, however, needed a longer time (~ 15 min). In contrast, the color change was less prominent in solvents with
lower DN. The color changed to light red in ethanol (DN = 18.5) and acetonitrile (DN = 14.1), whereas no change occurred in dichloromethane (DN = 0) and acetone (DN = 17.0) (ESI, Fig. S3). It is interesting that the film can distinguish methanol and ethanol, giving distinctly different colors, light green and light red, respectively.

Fig. 2 (a) [1·3MeOH]–Nafion film at various temperatures. (b) UV–vis absorption spectra of [1·3MeOH]–Nafion recorded between –60 °C and 100 °C at 20 K intervals. The spectra in the low energy region (600–1200 nm) are magnified (×5) for clarity. The changes are irreversible above 80 °C because of the desorption of MeOH. The inset shows the temperature dependence of the molar ratio of four-coordinated species (x₄) in the films of [1·3MeOH]–Nafion (○) and [2·3MeOH]–Nafion (●).

Fig. 3 [1]–Nafion (a) before and (b) after immersion in methanol.

The response of [1]–Nafion to mixed solvents was investigated to further reveal the effect of dilution of the high DN solvents (methanol or DMSO) with non-coordinating (DN = 0) solvents (dichloromethane). The color of the film in a methanol–dichloromethane mixture changed from light green to brown gradually as the methanol concentration decreased to 10% v/v, indicating a shift in the coordination equilibrium. In contrast, the color changed to light green in a DMSO–dichloromethane mixture independent of DMSO concentration (100–10% v/v), which indicates that DMSO coordinates to the complex even in diluted solutions. However, the time required for the color change became longer with decreasing DMSO concentration, from a few minutes in DMSO, to 10 min in 50% v/v mixture, and 1 h in a 10% v/v mixture. This is ascribed to the less efficient expansion of the nano-pores in Nafion in a non-polar solvent. The film showed no response to 5% v/v solutions of methanol or DMSO in dichloromethane.

In contrast to [1]–Nafion, [1·nMeOH]–Nafion also exhibited color changes in solvents with DN lower than methanol. The color changed from light green to light brown in ethanol by exchange of the solvent molecules. Immersion in dichloromethane caused complete desorption of methanol within 1 min, becoming completely red, in the reverse reaction of [1]–Nafion in methanol. This is due to efficient desorption of methanol into the solvent associated with the reduction of the pore size in Nafion. The complementary responses of [1]–Nafion and [1·nMeOH]–Nafion may be useful for solvent molecule recognition. [1·nDMSO]–Nafion was almost completely insensitive to solvents because of the strong coordination of DMSO. The color remained unchanged in ethanol, but turned dark brown in dichloromethane over 30 min by partial elimination of DMSO.

In conclusion, transparent films that exhibit reversible color changes in response to temperature change and solvent molecules with different DN have been developed by incorporating solvatochromic nickel complexes into Nafion. The films show repeated solvatochromism between different liquid phases, recognition of solvent donor numbers, and tunable chromic behaviors by ligand modification. Although various chromic films containing metal complexes and organic dyes have been reported, most of them respond to a single external stimulus. These thermochromic and solvatochromic films show promise for use in applications such as vapor/solvent indicators. Further investigations into the response and modification of the complexes will be the subject of future research.

This work was financially supported by JST A-STEP (AS242Z03210K) and KAKENHI (No. 24350073).

Notes and references

Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Hyogo 657-8501, Japan; Fax: +81-78-803-5679; E-mail: tmochida@platinum.kobe-u.ac.jp
† Electronic Supplementary Information (ESI) available: Photographs and UV–vis spectra of Nafion films incorporating 1 and 2. See DOI: 10.1039/b000000x/
‡ A strip of Nafion 117 (1.0 × 2.0 cm, thickness 0.183 mm, Aldrich) was immersed in an aqueous solution of NaOH (10 wt%) for 12 h, and then washed with water and air-dried. The film was immersed in a solution of [1][BF₄] in methanol (25 mM, 5 mL) for 24 h and then washed with methanol. The obtained film [1·nMeOH]–Nafion (n = 8–10) was dried under vacuum for 1 h to give a brown transparent film of [1·3MeOH]–Nafion. A red transparent film of [1]–Nafion was obtained by heating the film at 130 °C under vacuum. The amount of 1 in this film was 11 wt%, as estimated from the absorption spectra of the mother liquor. The ratio of 1 to SO₃ in the film was 39%, calculated from the EW (equivalent weight, ~1100) of Nafion 117. Other hydrophobic salts may be used for the cation exchange. [2·3MeOH]–Nafion was prepared similarly, using [2]X (X = PF₆ or BPh₄) as the cation source.
Functional films that exhibit thermochromism, solvatochromism and vapochromism have been developed by immobilization of cationic nickel complexes [NiII(acac)(R4en)]+ in Nafion.

Table of contents entry

Metal Complex–Nafion Hybrid Films

![Thermochromism Diagram]

Thermochromism

![Solvatochromism Diagram]

Solvatochromism

Functional films that exhibit thermochromism, solvatochromism and vapochromism have been developed by immobilization of cationic nickel complexes [NiII(acac)(R4en)]+ in Nafion.
Electronic Supplementary Information

Multi-Responsive Nafion Films Containing Cationic Metal-Chelate Complexes

Yusuke Funasako and Tomoyuki Mochida*

Department of Chemistry, Graduate School of Science, Kobe University, Rokkodai, Nada, Hyogo 657-8501, Japan

Fig. S1. Absorbance changes of [1·3MeOH]–Nafion monitored at 490 nm for repeated temperature changes between –40 °C (open circles) and 70 °C (filled circles).
Fig. S2. (a) [\(2\cdot3\text{MeOH}\)]–Nafion at various temperatures. (b) UV-vis absorption spectra of [\(2\cdot3\text{MeOH}\)]–Nafion recorded between –40 °C and 100 °C at 20 K intervals. The change is irreversible above 80 °C because of the desorption of MeOH. The insert shows the temperature dependence of the molar ratio (\(x_{4c}\)) of four-coordinated species in the film.

Fig. S3. [1]–Nafion (a) before and (b) after immersion in various solvents.