<table>
<thead>
<tr>
<th>タイトル</th>
<th>Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者</td>
<td>Liu, Xinyi / Uemura, Akiyoshi / Fukushima, Yoko / Yoshida, Yutaka / Hirashima, Masanori</td>
</tr>
<tr>
<td>掲載誌・巻号・ページ</td>
<td>Cell Reports, 17(9):2299-2311</td>
</tr>
<tr>
<td>刊行日</td>
<td>2016-11-22</td>
</tr>
<tr>
<td>資源タイプ</td>
<td>Journal Article / 学術雑誌論文</td>
</tr>
<tr>
<td>版区分</td>
<td>publisher</td>
</tr>
<tr>
<td>権利</td>
<td>©2016 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1016/j.celrep.2016.11.008</td>
</tr>
<tr>
<td>JaLCDOI</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://www.lib.kobe-u.ac.jp/handle_kernel/90003771</td>
</tr>
</tbody>
</table>

PDF issue: 2018-12-12
Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1

Highlights
- PlexinD1- or Sema3G-deficient mouse embryos show abnormal artery-lymph alignment
- PlexinD1 in lymphatic endothelial cells is crucial for proper vascular patterning
- Sema3G acts as a repulsive guidance cue through the Nrp2/PlexinD1 receptor complex

In Brief
During dermal lymphatic vascular development, the distribution of lymphatic endothelial cells is regulated by guidance cues from blood vessels. Liu et al. show that an artery-derived ligand, Sema3G, acts as a repulsive guidance cue through the Nrp2/PlexinD1 receptor complex to regulate lymphatic vascular patterning in mouse embryonic skin.

Authors
Xinyi Liu, Akiyoshi Uemura, Yoko Fukushima, Yutaka Yoshida, Masanori Hirashima

Correspondence
mhirashi@med.kobe-u.ac.jp

Liu et al., 2016, Cell Reports 17, 2299–2311 November 22, 2016 © 2016 The Author(s). http://dx.doi.org/10.1016/j.celrep.2016.11.008
Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1

Xinyi Liu,1 Akiyoshi Uemura,2 Yoko Fukushima,3 Yutaka Yoshida,4 and Masanori Hirashima1,5,*
1Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
2Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
3Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
4Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
5Lead Contact
*Correspondence: mhirashi@med.kobe-u.ac.jp
http://dx.doi.org/10.1016/j.celrep.2016.11.008

SUMMARY

The vertebrate circulatory system is composed of closely related blood and lymphatic vessels. It has been shown that lymphatic vascular patterning is regulated by blood vessels during development, but its molecular mechanisms have not been fully elucidated. Here, we show that the artery-derived ligand semaphorin 3G (Sema3G) and the endothelial cell receptor PlexinD1 play a role in lymphatic vascular patterning. In mouse embryonic back skin, genetic inactivation of Sema3G or PlexinD1 results in abnormal artery-lymph alignment and reduced lymphatic vascular branching. Conditional ablation in mice demonstrates that PlexinD1 is primarily required in lymphatic endothelial cells (LECs). In vitro analyses show that Sema3G binds to neuropilin-2 (Nrp2), which forms a receptor complex with PlexinD1. Sema3G induces cell collapse in an Nrp2/PlexinD1-dependent manner. Our findings shed light on a molecular mechanism by which LECs are distributed away from arteries and form a branching network during lymphatic vascular development.

INTRODUCTION

The vertebrate circulatory system comprises blood and lymphatic vascular systems. The developmental and anatomical associations between these two vascular systems are crucial for integrated vascular function. Blood endothelial cells (BECs) are derived from the nascent mesodermal cells and form a closed and hierarchical structure of arteries, veins, and capillaries. The molecular mechanisms underlying arterial or venous endothelial specification have been analyzed intensively, and signaling pathways such as vascular endothelial growth factor A (VEGF-A) and DIll/Notch have been implicated in this process (Benedito et al., 2009; Swift and Weinstein, 2009). Lymphatic endothelial cells (LECs) are differentiated from venous endothelial cells by expression of the transcription factors Sox18 and Prox1 (François et al., 2008; Srinivasan et al., 2007; Wigle et al., 2002) and form a blind-end and unidirectional system of lymphatic capillaries and collecting lymphatic vessels (Tammela and Alitalo, 2010). Lymphatic capillaries form a random network in peripheral tissues, such as the skin, whereas collecting lymphatic vessels are anatomically localized in parallel with arteries and eventually connect to veins at the venous angle (Sabin, 1902, 1904). During lymphatic vessel formation, VEGF-C plays a critical role in LEC proliferation, migration, and survival (Karkkainen et al., 2004). Recent studies indicated that lymphatic vascular patterning is regulated, at least in part, by blood vessels that develop earlier than lymphatic vessels (Hägerling et al., 2013). The molecular mechanisms underlying the spatial interaction between arteries and lymphatics have been elucidated by studies in zebrafish embryos showing that Cxc4+ LECs migrate adjacent to trunk arterial intersegmental blood vessels, which depends on the release of chemokine Cxc12 from arteries (Bussmann et al., 2010; Cha et al., 2012; Yaniv et al., 2006). A recent study in mouse embryos showed that the formation of lymphatic vessel depends on arteriogenesis regulated by Pitx2 and its target gene, Cxc12, in the dorsal mesentery (Mahadevan et al., 2014). Following migration along arteries, LECs should eventually be repelled from blood vessels to form a random lymphatic vascular network in the peripheral tissues. However, little is known about which factors provide the repulsive guidance cues from arteries to LECs.

Several factors have been shown to serve as repulsive guidance cues in endothelial cells (Adams and Eichmann, 2010; Meadows and Cleaver, 2015). The class 3 semaphorins (Sema3s) represent a family of secreted factors characterized by a conserved semaphorin domain and have been implicated in a variety of functions, including axon guidance, cell migration, growth cone collapse, and vascular development (Gurrapu and Tamagnone, 2016; Jongbloets and Pasterkamp, 2014; Koropoulou and Kolodkin, 2014; Kumanogoh and Kikutani, 2013; Tran et al., 2007; Yoshida, 2012). Most of these effects are mediated by plexins, large transmembrane receptors with highly conserved cytoplasmic domains, and co-receptors such as...
neuropilins (Nrp) (Chen et al., 1997; Takahashi et al., 1998). Several lines of evidence demonstrate that the Sema3E/PlexinD1 axis plays a crucial role in blood vessel patterning (Gitler et al., 2004; Gu et al., 2005; Meadows et al., 2012; Torres-Vázquez et al., 2004; Zhang et al., 2009). Sema3E activates PlexinD1 independently of Nrp, which triggers actin depolymerization and cellular collapse by reducing Rac1 activity through the RhoGAP domain of SH3BP1 (Tata et al., 2014). The Sema3E/PlexinD1 axis counteracts VEGF-induced filopodial projections at the front of actively sprouting blood vessels, indicating that PlexinD1 provides a repulsive guidance cue in endothelial cells (Fukushima et al., 2011; Kim et al., 2011). However, it remains to be elucidated whether PlexinD1 plays a role in lymphatic vascular patterning.

Sema3G is the most recently discovered member of class 3 semaphorins. Growing evidence implicates Sema3G in cell migration and axon guidance (Bron et al., 2007; Karayan-Tapon et al., 2008). Previous studies showed that Sema3G strongly binds to Nrp2 and induces repulsion of sympathetic axons or migration of smooth muscle cells (SMCs) in culture, but little is known about its signaling mechanisms (Kutschera et al., 2011; Taniguchi et al., 2005). Furthermore, previous studies in mice revealed a preferential expression pattern in developing arterial endothelial cells, but they did not detect any overt vascular phenotype in Sema3G-deficient mice (Kutschera et al., 2011; Uchida et al., 2015). Thus, to date, the in vivo role of Sema3G in vascular development remains unclear.

In this study, we investigated lymphatic vascular development in PlexinD1−/− or Sema3G-deficient mouse embryos and found that these molecules are important for LECs to be repelled from arteries in mouse embryonic skin. We also performed in vitro analyses demonstrating that Sema3G activates PlexinD1 through the binding of Nrp2. Here, we show that Sema3G provides a repulsive guidance cue from arteries to PlexinD1+ LECs during lymphatic vascular patterning.

RESULTS

Lymphatic Vascular Formation Is Initiated Near Large-Caliber Blood Vessels and Eventually Extends Away from Them in Mouse Embryonic Back Skin

We and others previously reported that embryonic back skin is a good model for studying lymphatic vascular patterning in mice (Hirashima et al., 2008; James et al., 2013; Martinez-Corral et al., 2015). To investigate lymphatic vascular patterning as well as blood vessel development in the thoracic region of embryonic back skin, we performed whole-mount triple-fluorescence confocal microscopy using antibodies to the pan-endothelial marker PECAM-1, α-smooth muscle actin (αSMA), and the LEC marker Nrp2 (Yuan et al., 2002). At embryonic day 12.5 (E12.5), a portion of the blood vessel becomes enlarged, suggesting it is undergoing a process of blood vessel remodeling. However, no part of the vasculature is covered by SMCs (data not shown), and only a small number of LECs are first detected in this region (Figure S1). By E13.5, large-caliber blood vessels are formed and partly covered by SMCs. An incomplete lymphatic network with filopodial extensions for subsequent branching sites is formed near large-caliber blood vessels. LECs are especially associated with αSMA+ blood vessels, suggesting that lymphatic vascular development follows blood vessel remodeling in mouse embryonic back skin (Figures 1A–1C). After E14.5, blood vessels are further remodeled to acquire coverage by SMCs, and a more widely distributed lymphatic network is detected (Figures 1D–1F). At E15.5, lymphatic vessels appear less associated with large-caliber blood vessels than those at earlier stages in the thoracic region of embryonic back skin (Figures 1G–1I). These results suggest that lymphatic network formation in mouse embryonic back skin is tightly regulated by some guidance cues from blood vessels.

PlexinD1−/− Embryos Show Abnormal Artery-Lymph Alignment and Defective Venous Formation in Mouse Embryonic Back Skin

Given that PlexinD1 signaling has been implicated in a repulsive guidance cue during blood vascular network formation (Carmeliet and Tessier-Lavigne, 2005; Eichmann et al., 2005; Kim et al., 2011), we studied the role of PlexinD1 in lymphatic vascular patterning of mouse embryonic back skin. We first characterized the expression of PlexinD1 by immunohistochemistry of whole-mount or transverse sections of mouse embryonic back skin using antibodies to PlexinD1 and the LEC marker Lyve-1. This analysis detected PlexinD1 expression in Lyve-1+ LECs as well as BECs (Figures S2A–S2F). RT-PCR analysis also detected PlexinD1 expression in LECs purified from mouse embryonic back skin (Figure S2G). We investigated the network formation of blood and lymphatic vessels in PlexinD1−/− embryonic back skin by whole-mount double fluorescence confocal microscopy using antibodies to PECAM-1 and the LEC marker VEGFR3 at E15.5. Lymphatic vessels form a random network whose pattern is not related to blood vessels in control littermates, whereas lymphatic vessels are tightly associated with large-caliber blood vessels in both the proximal lymphatic network and the distal migration front of PlexinD1−/− embryos, leading to reduced lymphatic vascular branching (Figures 2A–2H, 2M, and 2N). To investigate blood vessels in more detail, we used antibodies to the arterial endothelial marker connexin 40 (Cx40) and VEGFR3 for confocal microscopy of embryonic back skin at E15.5. This analysis identified arteries as the large-caliber blood vessels associated with VEGFR3+ lymphatic vessels in PlexinD1−/− embryos (Figures S2H and S2I). We further measured the number of Prox1+ LECs, but there was no significant difference between PlexinD1−/− and PlexinD1+/− embryos (Figure S2J), suggesting that abnormal lymphatic patterning is caused by the abnormal distribution of LECs in PlexinD1−/− embryos. We also noticed that MECA32 antibody predominantly detects venous and capillary endothelial cells in the embryonic back skin of control littermates, but the formation of large-caliber veins is disturbed in PlexinD1−/− embryos (Figures 2L–2L and 2O).

Conditional Ablation of PlexinD1 in LECs Results in Abnormal Artery-Lymph Alignment, but Not a Defect in Venous Formation, in Mouse Embryonic Back Skin

PlexinD1−/− embryos show defects in both venous and lymphatic vessel formation, raising the possibility that lymphatic
vessels may have replaced a space adjacent to arteries owing to the lack of veins. To address whether PlexinD1 is primarily important in LECs, we decided to ablate PlexinD1 using a Prox1 GFPCre/+ LEC-specific Cre deleter mouse strain. To confirm the specificity of Cre activity in LECs, Prox1 GFPCre/+ mice were crossed with the Rosa26 floxed-lacZ/+ Cre reporter mouse strain. X-gal staining followed by triple-fluorescence immunohistochemistry of Prox1 GFPCre/+; Rosa26 floxed-lacZ/+ embryonic back skin using antibodies to VEGFR3, the neurofilament marker 2H3, and PECAM-1 at E15.5 showed that the lacZ reporter is detected specifically in lymphatic vessels, but not in neurons or blood vessels (Figures S3 A–S3D). LEC-specific PlexinD1 conditional knockout Prox1 GFPCre/+; PlexinD1 flox/+ (PlexinD1 DELC) mice were generated by mating Prox1 GFPCre/+; PlexinD1 flox/mice and PlexinD1 flox/flox mice. Confocal microscopy of PlexinD1 DELC embryonic back skin using antibodies to PlexinD1, Lyve-1, 2H3, and PECAM-1 at E15.5 confirmed that PlexinD1 expression is lost specifically in lymphatic vessels but is still present in neurons and blood vessels (Figures S3E–S3I). Since the Prox1 GFPCre/+ strain is haploinsufficient for the Prox1 gene and itself shows developmental abnormalities (Srinivasan et al., 2007), Prox1 GFPCre/+; PlexinD1 flox/+ mice were exclusively analyzed as control littermates. We performed whole-mount double-fluorescence confocal microscopy of embryonic back skin using antibodies to Cx40 and VEGFR3 at E15.5. PlexinD1 DELC embryos showed an abnormal artery-lymph alignment similar to that in conventional PlexinD1 knockout embryos. Lymphatic vessels are tightly associated with large-caliber blood vessels in both the proximal lymphatic network and distal migration front, leading to reduced lymphatic vascular branching (Figure 3A–3H, 3M, and 3N). On the other hand, confocal microscopy of embryonic back skin using antibodies to Cx40 and MECA32 confirmed that the formation of large-caliber veins adjacent to arteries is not affected in PlexinD1 DELC embryos at E15.5 (Figure 3I–3L and 3O). These results indicate that abnormal artery-lymph alignment is caused primarily by the loss of PlexinD1 in LECs.

Sema3G lacZ/lacZ Embryos Show Abnormal Artery-Lymph Alignment and Defective Venous Formation in Mouse Embryonic Back Skin

We next tried to identify the PlexinD1 ligand responsible for proper lymphatic vascular patterning in mouse embryonic back skin. Since it has been reported that Sema3E, the ligand for PlexinD1, is implicated in a repulsive guidance cue in endothelial cells (Fukushima et al., 2011; Kim et al., 2011), we investigated the network formation of blood and lymphatic vessels in Sema3E−/− embryos. We performed whole-mount double-fluorescence confocal microscopy of embryonic back skin using antibodies to PECAM-1 and VEGFR3 at E15.5. Analysis of Sema3E−/− embryos showed that lymphatic vessels form a random network with a pattern that is not related to blood vessels (Figure S4), indicating that Sema3E is not required for proper lymphatic vascular patterning in mouse embryonic back skin.

Previous studies reported that Sema3G is preferentially expressed in arterial endothelial cells, but Sema3G-deficient mice exhibit no overt vascular phenotype (Kutschera et al., 2011; Uchida et al., 2015). We also investigated the expression pattern of Sema3G by using a different Sema3GlacZ mouse strain carrying a lacZ reporter in the Sema3G locus and confirmed the preferential expression in arteries by X-gal staining of
Figure 2. *PlexinD1*+/− Embryos Show Abnormal Artery-Lymph Alignment and Defective Venous Formation in Mouse Embryonic Back Skin

Whole-mount immunohistochemistry of back skin is shown for PECAM-1 (A–D, red), VEGFR3 (A–D, green; E–H, white), Cx40 (I and K, red), and MECA32 (I and K, green; J and L, white) at E15.5. Lymphatic vessels are more tightly associated with large-caliber blood vessels in both the proximal lymphatic network and distal migration front in *PlexinD1*+/− embryos (arrowheads) compared with control littermates. Formation of the venous structure is disturbed in *PlexinD1*+/− embryos compared with control littermates (arrows). Scale bars, 100 μm. Statistical analyses of artery-lymph arrangement (M, n = 5 each group), lymphatic branching (N, n = 5 each group), and venous formation (O, n = 3 each group). Values are presented as mean ± SEM. ***p < 0.001, *p < 0.05, unpaired two-tailed Student’s t test. See also Figures S2 and S7.
Figure 3. Loss of PlexinD1 in LECs Results in Abnormal Artery-Lymph Alignment but Normal Venous Formation in Mouse Embryonic Back Skin

Whole-mount immunohistochemistry of back skin is shown for Cx40 (A–D, I, and K, red), VEGFR3 (A–D, green; E–H, white), and MECA32 (I and K, green; J and L, white) at E15.5. In PlexinD1^{ALEC} embryos, lymphatic vessels are more tightly associated with large-caliber blood vessels in both the proximal lymphatic network and distal migration front (arrowheads) compared with control littermates. Formation of the venous structure is normal compared with control littermates (arrows). Scale bars, 100 μm. Statistical analyses of artery-lymph arrangement (M, n = 3 each group), lymphatic branching (N, n = 3 each group), and venous formation (O, n = 3 each group). Values are presented as mean ± SEM. ***p < 0.001, **p < 0.01, and *p < 0.05; NS, not significant, unpaired two-tailed Student’s t test. See also Figures S3 and S7.
Sema3G^{lacZ} embryonic back skin at E15.5 (Figures S5A–S5C). We thus hypothesized that Sema3G is a good candidate for the ligand, serving as a repulsive guidance cue from arteries to LECs that appears to be defective in PlexinD1^{−/−} or PlexinD1^{ALEC} embryos. To investigate whether Sema3G contributes to proper lymphatic vascular patterning in mouse embryonic back skin, we performed whole-mount double-fluorescence confocal microscopy using antibodies to PECAM-1 and VEGFR3 at E15.5. Sema3G^{lacZ/lacZ} embryos showed abnormal artery-lymph alignment similar to that in PlexinD1^{−/−} or PlexinD1^{ALEC} embryos. Lymphatic vessels are tightly associated with large-caliber blood vessels in both the proximal lymphatic network and distal migration front, leading to reduced lymphatic vascular branching (Figure 4A–4H, 4M, and 4N). Moreover, confocal microscopy of embryonic back skin using antibodies to Cx40, VEGFR3, and MECA32 showed that the large-caliber blood vessels associated with lymphatic vessels are arteries (Figure S5D and S5E, arrowheads) and the formation of large-caliber veins is disturbed in Sema3G^{lacZ/lacZ} embryos at E15.5 (Figures 4I–4L and 4O). However, these abnormalities in artery-lymph alignment and venous formation appear transient in Sema3G^{lacZ/lacZ} mice, since they are not detected at E17.5 (Figures S5F–S5J, arrows) or in the adult ear skin (data not shown). These results indicate that vascular defects in the back skin of Sema3G^{lacZ/lacZ} embryos are very similar to those found in PlexinD1^{−/−} embryos.

Sema3G Binds to a Receptor Complex Composed of Nrp2 and PlexinD1

Given the similarity of lymphatic vascular phenotypes between PlexinD1^{−/−} and Sema3G^{lacZ/lacZ} embryos, we hypothesized that Sema3G may provide signals to LECs through PlexinD1. Previous reports showed that Sema3G binds to Nrp2 (Kutschera et al., 2011; Taniguchi et al., 2003), but the interaction between Sema3G and PlexinD1 remains to be elucidated. To investigate whether Sema3G binds to PlexinD1 as well as Nrp2, COS-7 cells were transfected with expression vectors carrying PlexinD1, Nrp2, or both. The transfected cells were incubated with Sema3G fused to alkaline phosphatase (Sema3G-AP) or Sema3E-AP as a control and stained for Nrp2 fused to FLAG tag (Nrp2-FLAG), or both. The transfected cells were incubated with Sema3G fused to alkaline phosphatase (Sema3G-AP) or Sema3E-AP as a control and stained for alkaline phosphatase (AP) activity to detect the ligand binding. Consistent with a previous finding (Gu et al., 2005), we found that Sema3E-AP directly binds to PlexinD1-expressing cells (Figure 5B and 5D), whereas Sema3G-AP binds to Nrp2-expressing cells (Figures 5G and 5H). On the other hand, Sema3G-AP did not bind to PlexinD1-expressing cells in the absence of Nrp2 (Figure 5F), indicating that PlexinD1 is not a direct receptor for Sema3G. We next investigated the possibility that Nrp2 works as a co-receptor with PlexinD1. HEK293T cells were transfected with expression vectors carrying PlexinD1, Nrp2-FLAG, or both, followed by co-immunoprecipitation experiments. Western blot analysis following immunoprecipitation of cell lysates with an antibody to FLAG detected the presence of PlexinD1 protein mostly when cells were transfected only with both Nrp2-FLAG and PlexinD1 (Figure 5I). To confirm the binding between Nrp2 and PlexinD1 endogenous proteins, we used human dermal lymphatic microvascular endothelial cells (HMVEC-dLyNeo) for co-immunoprecipitation experiment, since these two proteins were detected by western blot (Figure 5J, input). Western blot analysis following immunoprecipitation of HMVEC-dLyNeo lysates with an antibody to Nrp2 actually detected the presence of PlexinD1 protein (Figure 5J), indicating that Nrp2 and PlexinD1 bind to each other to form a receptor complex in LECs.

Sema3G Induces Cell Collapse in an Nrp2/PlexinD1-Dependent Manner and Exhibits a Repulsive Activity to Primary LECs

In a binding analysis, we noticed that Sema3E-AP induces cell collapse of PlexinD1-expressing cells (Figure 5B, arrows), as reported previously (Gu et al., 2005). Similarly, we noticed that Sema3G-AP induces cell collapse of some AP-positive cells, but only when COS-7 cells were transfected with both PlexinD1 and Nrp2 (Figure 5H, arrows). We thus investigated whether Sema3G induces cell collapse in an Nrp2/PlexinD1-dependent manner. COS-7 cells were transfected with expression vectors carrying PlexinD1, Nrp2-FLAG, or both, followed by treatment with Sema3G-AP protein. The expression of PlexinD1 and Nrp2-FLAG proteins was checked by immunocytochemistry using antibodies to PlexinD1, Nrp2, and FLAG together with phallolidin, a marker for F-actin. Without Sema3G-AP treatment, cell size is comparable among cells after transfection (Figure S6). Sema3G-AP does not induce cell collapse of cells expressing either PlexinD1 (Figures 6B and 6C) or Nrp2 (Figures 5G and 6D–6F) alone. When COS-7 cells were transfected with both and treated with Sema3G-AP, cell collapse was observed only in cells expressing both PlexinD1 and Nrp2 proteins (Figures 6G–6J, arrows), indicating that Sema3G works in an Nrp2/PlexinD1-dependent manner. To investigate whether Sema3G affects LEC migration induced by VEGF-C, we performed wound-healing and transwell migration assays using HMVEC-dLyNeo cells. Sema3G did not affect VEGF-C-induced migration (Figure 6K), whereas Sema3G added to the lower chamber suppressed VEGF-C-induced transwell migration from the upper to lower surface of a cell-permeable membrane (Figure 6L). These results indicate that Sema3G does not affect LEC motility but serves as a repulsive factor for LECs.

DISCUSSION

In this study, we found that proper patterning of LECs is regulated by the Sema/Plexin signaling pathway mediated by the artery-derived ligand Sema3G and the LEC receptors Nrp2 and PlexinD1 (Figure 7). Genetic inactivation of Sema3G or PlexinD1 results in abnormal artery-lymph alignment and reduces lymphatic vascular branching in mouse embryonic back skin. In vitro analyses showed that Sema3G binds to the Nrp2/PlexinD1 receptor complex, induces cell collapse, and exhibits a repulsive effect on primary LECs. Our findings shed light on a mechanism by which LECs can be distributed away from arteries and form a branching network during lymphatic vascular development.

PlexinD1 Signals in LECs Regulate Lymphatic Vascular Patterning in Mouse Embryonic Back Skin

In the zebrafish trunk, arteries provide essential guidance cues for LECs (Bussmann et al., 2010). Our results using mouse
Figure 4. *Sema3G* lacZ/lacZ Embryos Show Abnormal Artery-Lymph Alignment and Defective Venous Formation in Mouse Embryonic Back Skin

Whole-mount immunohistochemistry of back skin is shown for PECAM-1 (A–D, red), VEGFR3 (A–D, green; E–H, white), Cx40 (I and K, red), and MECA32 (I and K, green; J and L, white) at E15.5. Lymphatic vessels are more tightly associated with large-caliber blood vessels in both the proximal lymphatic network and distal migration front in *Sema3G* lacZ/lacZ embryos (arrowheads) compared with control littermates. Formation of the venous structure is disturbed in *Sema3G* lacZ/lacZ embryos compared with control littermates (arrows). Scale bars, 100 μm. Statistical analyses of artery-lymph arrangement (M, *Sema3G* +/lacZ, n = 4, *Sema3G* lacZ/lacZ, n = 9), lymphatic branching (N, *Sema3G* +/lacZ, n = 4, *Sema3G* lacZ/lacZ, n = 9), and venous formation (O, n = 3 each group). Values are presented as mean ± SEM. ***p < 0.001, **p < 0.01, *p < 0.05, unpaired two-tailed Student’s t test. See also Figures S4, S5, and S7.
embryonic back skin also show that LECs are distributed near arteries at an early stage, suggesting that arteries provide attractive guidance cues, such as soluble factors and/or extracellular matrix for the migration of LEC precursors (François et al., 2012). A previous study in zebrafish embryos identified Cxcl12 released from arterial endothelial cells as an attractive guidance cue (Cha et al., 2012). In mouse embryonic back skin, the distribution of LEC precursors near arteries appears to be related to SMC investment, suggesting an involvement of SMC-derived factors such as VEGF-C (Nurmi et al., 2015).

During the following stages, LECs are distributed into vacant areas and form a lymphatic capillary network. We found abnormal artery-lymph alignment and reduced lymphatic vascular branching in the back skin of PlexinD1−/− embryos. These two phenotypes appear to be closely associated with each other, since both are affected by LEC distribution patterns.

Figure 5. Sema3G Binds to the Nrp2/PlexinD1 Complex

(A–H) AP-stained COS-7 cells are shown after being transfected with expression vectors carrying PlexinD1 (B and F), Nrp2-FLAG (C, G), or both (D and H) and incubated with supernatants containing Sema3E-AP or Sema3G-AP. Sema3E-AP, but not Sema3G-AP, directly binds to PlexinD1-expressing cells, whereas Sema3G-AP, but not Sema3E-AP, binds to Nrp2-expressing cells. Scale bars, 100 μm.

(I) Western blot following immunoprecipitation experiments. HEK293T cells were transfected with expression vectors carrying PlexinD1, Nrp2-FLAG, or both. Lysates were immunoprecipitated using anti-FLAG antibody. The immunoprecipitates were probed using anti-PlexinD1, anti-FLAG, and anti-β-actin antibodies. The value from the experiment without vectors was arbitrarily set at 1 (n = 5 each group). ***p < 0.001, one-way ANOVA followed by Tukey-Kramer test for multiple comparisons.

(J) Western blot following immunoprecipitation experiments. Lysates from HMVEC-dLyNeo cells were immunoprecipitated using control (immunoglobulin G [IgG]) or anti-Nrp2 antibody. The immunoprecipitates were probed using anti-PlexinD1, anti-Nrp2, and anti-β-actin antibodies. The value from the control experiment was arbitrarily set at 1 (n = 5 each group).

Values are presented as mean ± SEM. **p < 0.01; NS, not significant, unpaired two-tailed Student’s t test.
without a change in LEC number. In other words, when more LECs are distributed near arteries, fewer LECs can contribute to branching network formation. Despite the proximity between lymphatic vessels and blood vessels, abnormal lymph-blood mixing or shunt between the two vascular compartments is not detected in \(PlexinD1^{+/+}/C0\) embryos, indicating that PlexinD1 signals are dispensable for proper separation of lymphatic and blood vasculature.

PlexinD1 is expressed in the vascular endothelium and CNS (Gitler et al., 2004; Gu et al., 2005). Previous studies detected multiple cardiovascular defects in \(PlexinD1^{+/+}\) mice, including atrial enlargement, outflow tract defect, coronary artery anomaly, and disorganized intersomitic vessels (Gitler et al., 2004; Zhang et al., 2009). A variety of studies in mice have also implicated PlexinD1 in various aspects of nervous system development (Bellon et al., 2010; Chauvet et al., 2007). Since arterial development in the embryonic skin is also influenced by nerve-provided cues (Mukouyama et al., 2002), abnormal association between arteries and lymphatic vessels might be secondary to these other cardiovascular or nervous defects in \(PlexinD1^{+/+}\) mice. However, our conditional knockout analysis of \(PlexinD1^{DLC5}\) embryos demonstrated that PlexinD1 expression in LECs is responsible for proper lymphatic vascular patterning to inhibit abnormal artery-lymph alignment. This is consistent with previous reports showing that PlexinD1 signals serve as a repulsive guidance cue in blood vessel formation during embryogenesis or in the oxygen-induced retinopathy model (Fukushima et al., 2011; Gu et al., 2005; Kim et al., 2011). On the other hand, the role of lymphatic PlexinD1 in adulthood remains to be elucidated owing to perinatal lethality of \(PlexinD1^{+/+}\) mice or \(PlexinD1^{DLC5}\) mice carrying \(Prox1^{GFPCre}\) haploinsufficient mutation (Gu et al., 2005; Srinivasan et al., 2007). Our results indicate that LECs receive a repulsive guidance cue from arteries through PlexinD1 to form a random lymphatic vascular network in mouse embryonic back skin.
Sema3G is the Ligand for PlexinD1-Mediated Lymphatic Vascular Network Formation

To our surprise, Sema3E, a direct ligand for PlexinD1, is dispensable for proper lymphatic vascular patterning in mouse embryonic back skin, while it has been reported to regulate blood vessel patterning (Gu et al., 2005). On the other hand, we found that mice deficient in an artery-specific ligand, Sema3G, show abnormal artery-lymph alignment and reduced lymphatic vascular branching without lymph-blood mixing in the embryonic back skin, which is also seen in *PlexinD1*/*C0/C0* mice. Migration assays showed that Sema3G does not inhibit VEGF-C-induced migration but exhibits a repulsive effect on primary LECs. These results suggest that Sema3G is a repulsive guidance cue from arteries to PlexinD1+ LECs. Although Sema3G does not bind directly to PlexinD1, co-immunoprecipitation analysis using transfected cells and primary LECs indeed showed that Nrp2, a receptor for Sema3G, binds to PlexinD1. More importantly, Sema3G selectively induces the collapse of PlexinD1+ cells when Nrp2 protein is co-expressed. Although it has been proposed that Sema3G binds to Nrp2 in a complex with PlexinA family proteins (Gaur et al., 2009), our result is the demonstration that Sema3G induces PlexinD1-mediated cellular responses. This Nrp2-dependent PlexinD1 signaling mechanism for Sema3G in LECs is very similar to previous findings regarding other Sema/Nrp/Plexin family members. Sema3A and Sema3F have a repellent effect on endothelial cells in an Nrp1- or Nrp2-dependent manner, respectively (Gutmann-Raviv et al., 2007). Sema3A/Nrp1/PlexinA1 signals have been implicated in cell repulsion during lymphatic valve formation (Bouvrée et al., 2012; Jurisic et al., 2012).

A previous study reported that Nrp2 is required for lymphatic vascular development in mice (Yuan et al., 2002), and we detected the enlargement of lymphatic vessels, but not abnormal artery-lymph alignment, in the back skin of *Nrp2*/*−−* mouse embryos (data not shown). The discrepancy in lymphatic phenotype between Sema3G/PlexinD1- and Nrp2-deficient mouse embryos is probably related to the fact that Nrp2 is a co-receptor for VEGF-C and also interacts with other signaling pathways, such as transforming growth factor β (TGF-β), heparan sulfate growth factor (HGF), or integrin signaling (Grandclement et al., 2011; Ou et al., 2015; Sulpice et al., 2008; Xu et al., 2010). Since the VEGF-C/VEGFR3 axis plays a critical role in lymphatic vessel formation, loss of Nrp2 results in lymphatic sprouting defects caused by a change in VEGF-C signals. Moreover, Nrp2 binds to several members of the class 3 semaphorin family, including Sema3B, 3C, 3F, and 3G (Neufeld and Kessler, 2008). Sema3C induces glomerular endothelial cell proliferation and elicits a repulsive guidance cue through Nrp2 (Banu et al., 2006; Ruediger et al., 2013). Sema3F functions as a repellent cue of LECs in tumors (Bielenberg et al., 2004). Since Nrp2 interacts with many proteins that have been implicated in cellular migratory and cell extension behaviors, the in vivo role of Nrp2 in lymphatic vascular patterning remains to be elucidated.

We analyzed lymphatic vessels in embryonic mesenteries, but abnormal artery-lymph alignment was not detected in Sema3G or *PlexinD1* knockout embryos (data not shown). Origins of LECs are different among organs (Martinez-Corral et al., 2015; Stanczuk et al., 2015), and Sema3G might play a different role in the incorporation of non-venous-derived cells into the growing lymphatic vasculature. We so far detected the abnormal phenotype of artery-lymph alignment only in the embryonic back skin of *Sema3G*/*lacZ/lacZ* mice, suggesting a compensatory mechanism such as another set of repulsive cues at later stages. Alternatively, the repulsive signal from arterial endothelial cells (ECs) might play a role predominantly at earlier stages, when the immature arterial SMC layer allows diffusion of Sema3G, which is more accessible to LECs. Further experiments will be required to address these possibilities of spatiotemporally restricted involvement of Sema3G in lymphatic vascular patterning. In conclusion, our study clearly shows that arterial Sema3G and lymphatic PlexinD1 play a crucial role in embryonic dermal lymphatic vascular patterning.

EXPERIMENTAL PROCEDURES

Mice

The *Prox1*FFPCre+ LEC-specific Cre deleter mouse strain (Srinivasan et al., 2010) was kindly provided by Dr. Guillermo Oliver and crossed with...
closed-colony Jcl:ICR mice. A colony of mice heterozygous for PlexinD1+/− (Gu et al., 2005) or PlexinD1fl/fl (Zhang et al., 2009) mice was maintained in the C57BL/6 genetic background as described previously. The generation of the Sema3GΔC14/C14 mouse strain is described in the Supplemental Experimental Procedures. 12:00 p.m. on the day when a vaginal plug was was considered E0.5. Mice were genotyped by PCR analysis of tail or ear DNA. All animal experiments were approved by the Institutional Animal Care and Use Committee of Kobe University Graduate School of Medicine and carried out in accordance with the animal experimentation guidelines of the Kobe University Graduate School of Medicine.

Antibodies
We used rat anti-PECAM-1 (clone Mec13.3, BD Pharmingen), fluorescein isothiocyanate (FITC)-conjugated mouse anti-α-smooth muscle actin (clone 1A4, Sigma), goat anti-Nrp2 (R&D Systems), goat anti-VEGFR3 (R&D), rabbit anti-Cx40 (Alpha Diagnostics), rat anti-MECA32 (BD Pharmingen), goat anti-PlexinD1 (R&D), Cy3-conjugated mouse anti-FLAG (clone M2, Sigma), and mouse anti-β-actin (Sigma) antibodies. For immunofluorescence, we used secondary antibodies conjugated to Alexa 488, Cy3, Cy5, or DyLight649 (Life Technologies or Jackson ImmunoResearch).

Immunohistochemistry
For whole-mount preparation, embryos were dissected and fixed overnight with 4% paraformaldehyde (PFA) in PBS at 4°C. The embryos were washed three times with PBS containing 0.2% Triton X-100 (PBT) at 4°C for 30 min, blocked overnight at 4°C in PBT containing 1% BSA, and stained with primary antibodies in blocking solution at 4°C for a week, followed by two vigorous overnight washes in PBT. The samples were incubated with secondary antibodies in blocking solution for another week, followed by two overnight washes in PBT. Stained embryos were dehydrated in methanol and cleared in a mixture of benzyl alcohol and benzyl benzoate (1:2). For flat-mount preparation of the embryonic skin, staining was performed as described previously, except that 1% PFA/PBS was used as fixative (Hirashima et al., 2008). Confocal microscopy was carried out on an Olympus FV-1000 (Olympus) and Zeiss LSM-700 (Carl Zeiss). The artery-lymph arrangement was analyzed as average mean fluorescence of MECA32 expression using ImageJ (NIH).

Plasmid Transfection
COS-7 and 293T cells were certified in DMEM with 4.5 g/L glucose (Life Technologies), 10% fetal bovine serum (MP Biomedicals), 2 mM L-glutamine (Life Technologies), and penicillin/streptomycin (Life Technologies). 80% confluent COS-7 or 293T cells were transfected with pCAGGS expression vector (Niwa et al., 1991) carrying enhanced GFP, pCMV expression vector (Lonza) carrying mouse Sema3E or mouse Sema3G (Gu et al., 2005; Taniguchi et al., 2005) and cultivated for 7 days in FreeStyle 293 Expression Medium (Life Technologies). The supernatant was concentrated 2-fold by Amicon Ultra-4 50K Centrifugal Filter Devices (Merck Millipore) and used as conditioned medium.

Cell Binding Assay to Sema-AP Proteins
24 hr after transfection with PlexinD1 and/or Nrp2 expression vectors, COS-7 cells were plated at 2 × 10^4 cells per well in 12-well plates. After another 24 hr, the medium was replaced by conditioned medium containing Sema3E-AP or Sema3G-AP protein. After incubation at 37°C for 30 min, the cells were washed twice with PBS, fixed with 4% PFA/PBS at room temperature for 30 min, and incubated at 65°C for 2 hr to inactivate endogenous AP activity. The cells were equilibrated with 100 mM Tris-HCl (pH 9.5) and then developed with the NBT/BCIP substrate (Nacalai Tesque) at room temperature for 1 hr. Cells binding to Sema-AP proteins were detected as purple cells.

Immunocytochemistry
Cells were fixed with 4% PFA/PBS at 4°C for 20 min, washed three times with PBS at room temperature for 2 min, incubated with PBT at room temperature for 10 min, and washed three times with PBS at room temperature for 2 min. Cells were then blocked in 1% BSA/PBS at room temperature for 1 hr and incubated overnight with primary antibodies in blocking solution at 4°C. Cells were washed three times with PBS at room temperature for 2 min, followed by incubation with secondary antibodies and Alexa-Fluor-633-conjugated phalloidin (Life Technologies) in blocking solution at room temperature for 1 hr. Cells were washed twice with PBS at room temperature for 2 min and analyzed by an inverted microscope (IX81, Olympus). To assess cell collapse induced by semaphorin proteins, images were processed using Photoshop CS5 (Adobe) and cell area was measured by ImageJ. The percentage of cells with area less than 1,600 μm^2 was calculated as presented previously (Gu et al., 2005; Takahashi et al., 1999).

Co-Immunoprecipitation Assay
The 293T cells transfected with vectors expressing PlexinD1 and/or Nrp2 were lysed in 50 mM Tris-HCl (pH 7.5) containing 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, and protease inhibitor cocktails (Pierce). Total cell extracts were centrifuged at 6,000 × g for 15 min, and the supernatant was recovered as the cell lysate. To immunoprecipitate Nrp2-FLAG protein, 1 mg cell lysate was incubated overnight at 4°C with 1 μg anti-FLAG antibody (Sigma) and protein G agarose (GE Healthcare). The immune complexes were then washed three times with lysis buffer, boiled in 2× sample buffer, and loaded on a 7.5% SDS polyacrylamide gel. Western blots were analyzed with anti-PlexinD1, anti-FLAG, or anti-β-actin antibodies and secondary antibodies conjugated to horseradish peroxidase (Jackson ImmunoResearch). To detect the binding between PlexinD1 and Nrp2 endogenous proteins, HMVEC-dLyNeo cells (Lonza) were cultivated in endothelial growth medium 2 (EGM-2) (Bullet Kit, Lonza). The co-immunoprecipitation assay was performed as described above, except that anti-Nrp2 antibody was used for immunoprecipitation.

Wound-Healing Assay
Confluent monolayers of quiescent HMVEC-dLyNeo cells were scratched- wounded, and 20 ng/mL VEGF-C (R&D) and/or conditioned medium containing Sema3G-AP was added. After incubation for 24 hr, wound closure was measured.

Transwell Migration Assay
50,000 HMVEC-dLyNeo cells were placed to the upper chamber of the apparatus (6.5-mm-diameter insert, 3.0-μm pore size; Corning Incorporated) in 100 μL EBM-2 medium (Lonza). 20 ng/mL VEGF-C and/or conditioned medium containing Sema3G-AP was added to the lower chamber in 600 μL EGM-2 (Bullet Kit). After incubation for 48 hr, cells on the lower surface of the membrane were fixed with 3.7% formaldehyde/PBS and stained with hematoxylin. Cells on the upper surface of the membrane were mechanically removed using a cotton swab (Katoh et al., 2006). Migrated cells were counted in six random fields for each membrane.

Statistical Analysis
Values are presented as mean ± SEM. The unpaired two-tailed Student’s t test was used to compare results between two groups. One-way ANOVA followed by Tukey-Kramer test was used for multiple comparisons. At least three specimens were analyzed in all cases. p values are indicated as follows: ***p < 0.001, **p < 0.01, and *p < 0.05.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures and seven figures and can be found with this article online at http://dx.doi. org/10.1016/j.celrep.2016.11.008.

AUTHOR CONTRIBUTIONS
Conceptualization, M.H.; Methodology, A.U. and M.H.; Investigation, X.L., A.U., Y.F., and M.H.; Resources, Y.Y.; Writing – Original Draft, X.L. and Y.Y.; Writing – Review & Editing, A.U., Y.F., and M.H.; Visualization, M.H.; Supervision, A.U.; Project Administration, M.H.; Funding Acquisition, A.U. and M.H.
REFERENCES

Supplemental Information

Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1

Xinyi Liu, Akiyoshi Uemura, Yoko Fukushima, Yutaka Yoshida, and Masanori Hirashima
Figure S1. Lymphatic vascular formation in mouse embryonic skin initiates on the lateral side of embryos, Related to Figure 1. Whole-mount immunohistochemistry of a mouse embryo is shown in lateral view for PECAM-1 (A, red) and Nrp2 (A, green; B, white) at E12.5. Nrp2⁺ LECs (arrowhead) are seen in the skin between the cervical and thoracic area. Scale bars, 100 μm.
Figure S2. **PlexinD1 is expressed in LECs and BECs, Related to Figure 2.** (A–F)

Immunohistochemistry of whole-mount (A–C, at E15.5) or transverse section (D–F, at E13.5) of back skin is shown for PlexinD1 (red) and Lyve-1 (green). PlexinD1 is expressed in Lyve-1+ lymphatic vessels (arrows) as well as blood vessels. (G) RT-PCR analysis using LECs and BECs purified from mouse embryonic back skin at E14.5. (H, I) Whole-mount immunohistochemistry of back skin is shown for Cx40 (red), and VEGFR3 (green) at E15.5. VEGFR3+ lymphatic vessels are tightly associated with Cx40+ arteries in *PlexinD1*−/− embryos (arrowheads). (J) Statistical analysis of Prox1+ LEC number in embryo back skin at E15.5. The number of LECs are comparable between *PlexinD1*+/− and *PlexinD1*−/− embryos (n =4 each group). Values are presented as mean ± SEM. NS, not significant, unpaired two-tailed Student’s *t*-test. Scale bars, 100 μm.
Figure S3. PlexinD1ΔLEC embryos were generated by using Prox1GFPCre/+ mouse strain, Related to Figure 3. (A–D) X-gal staining (A, black) and immunohistochemistry for VEGFR3 (B, white), 2H3 (C, white), and PECAM-1 (D, white) of Prox1GFPCre/+, Rosa26floxed-lacZ/+ mouse embryonic back skin identified the Cre recombinase activity in lymphatic vessels (arrowheads) but not in neurons (arrow) or blood vessels (open arrow) at E15.5. (E–I) Whole-mount immunohistochemistry of PlexinD1ΔLEC embryonic back skin is shown for PlexinD1 (E, H), Lyve-1 (F), 2H3 (G), and PECAM-1 (I) at E15.5. PlexinD1 expression is lost in lymphatic vessels (arrowheads) but is still present in neurons (arrows) and blood vessels (open arrows) of PlexinD1ΔLEC embryos. Scale bars, 100 μm.
Figure S4. *Sema3E*^{−/−} embryos showed a normal lymphatic vascular patterning in mouse embryonic back skin, Related to Figure 4. Whole-mount immunohistochemistry of back skin is shown for PECAM-1 (A, B, red) and VEGFR3 (A, B, green; C, D, white) at E15.5. Lymphatic vessels form a random network with a pattern that is not related to blood vessels in *Sema3E*^{−/−} embryos. Statistical analyses of artery-lymph arrangement (E) and lymphatic branching (F) (n =3 each group). Values are presented as mean ± SEM. NS, not significant, unpaired two-tailed Student’s t-test. Scale bars, 100 μm.
Liu, X. et al.

A

B

C

D

E

F

G

H

I

J

The length of lymphatics-aligned artery /the total length of artery (%)
Figure S5. Generation and analysis of Sema3G^{lacZ/lacZ} mice, Related to Figure 4. (A) Schematic representation of Sema3G gene targeting strategy. The genomic sequence carrying the whole coding sequence of the Sema3G gene was replaced with a lacZ/neo cassette by homologous recombination using a bacterial artificial chromosome (BAC)-based targeting vector. The floxed neo cassette was removed by Cre-mediated excision to obtain the Sema3G^{lacZ} allele. Exons and untranslated regions are shown as filled and open boxes, respectively. (B) PCR genotyping with Sema3G-Fwd, Sema3G-Rev, and LacInZRev primers shown as arrowheads in panel A. (C) X-gal staining of Sema3G^{lacZ/lacZ} mouse embryonic back skin identified the preferential expression in arteries at E15.5. (D, E) Whole-mount immunohistochemistry of back skin is shown for Cx40 (red) and VEGFR3 (green) at E15.5. VEGFR3⁺ lymphatic vessels are tightly associated with Cx40⁺ arteries in Sema3G^{lacZ/lacZ} embryos (arrowheads). (F–I) Whole-mount immunohistochemistry of back skin is shown for PECAM-1 (red) and VEGFR3 (green) at E17.5. Lymphatic vessels form a random network whose pattern is not related to blood vessels in Sema3G^{lacZ/lacZ}, compared to control littermates. (J) Statistical analysis of artery-lymph arrangement at E17.5 (Sema3G^{+/lacZ}, n = 3; Sema3G^{lacZ/lacZ}, n = 6). Values are presented as mean ± SEM. NS, not significant, unpaired two-tailed Student’s t-test. Scale bars, 100 μm.
Figure S6. Morphology of transfected COS-7 cells under non-stimulated conditions, Related to Figure 6. Immunocytochemistry of COS-7 cells is shown after being transfected with expression vectors carrying PlexinD1 (B–C), Nrp2-FLAG (D–F), or both (G–I), and stained by using antibodies to PlexinD1 (B, C, H, I, green), FLAG (D, F, G, I, red), and Nrp2 (E, F, green), and phalloidin (A, C, F, I, blue). Scale bars, 100 μm.
Figure S7. Schematic representation of measurement of artery-lymph arrangement, Related to Figure 2–4, S4–S5. (A) Whole-mount immunohistochemistry of back skin is shown for arterial endothelial marker Cx40 (red) and LEC marker VEGFR3 (green) at E15.5. Scale bars, 100 μm. Area of rectangle is shown in B and C. Artery-lymph arrangement was assessed by the following methods. (B) Center line of artery (red) is drawn in white. (C) In the area within two dashed lines (15 μm from the edge of arteries), center line of artery is colored in black or erased where adjacent lymphatic vessels (green) are present or absent, respectively. The length of lymphatics-aligned artery per the total length of artery (%) was calculated as total length of black line per total length of white line. Images were processed using Photoshop CS5 and total length of lines was measured by ImageJ.
SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Antibodies
We used rabbit anti-Lyve-1 (Reliatech), rabbit anti-Prox1 (Covance), and mouse anti-neurofilament (clone 2H3, Developmental Studies Hybridoma Bank) antibodies.

Immunohistochemistry of Cryosections
Embryos were dissected at E13.5, embedded in OCT compound, and cut transversely into 10 μm sections. Following fixation in 4% PFA/PBS, sections were stained, as described previously (Hirashima et al., 2008).

RT-PCR
PECAM-1+/Lyve-1+/CD45− LECs and PECAM-1+/Lyve-1+/CD45− BECs from E14.5 mouse embryonic back skin were purified by fluorescence-activated cell sorting, as described previously (Hirashima et al., 2008). Total RNA was isolated from purified cells using Trizol (Invitrogen), according to the manufacturer’s instructions. One mg of total RNA was reverse-transcribed using the SuperScript first-strand synthesis system for RT-PCR (Invitrogen). Control specimens were prepared without reverse transcriptase (RTase). First-strand cDNA was used for PCR with specific primers for PlexinD1 (forward, 5’-TGCAGAAGAGTGACCAGGAG-3’; reverse, 5’-AAGTGGTGCTCTTTAGAAAC-3’), Nrp1 (forward, 5’-ACTGACAGCGCAATAGCAAAAGAAG-3’; reverse, 5’-TCGGACAAATCGAGTTA TCAGTGGT-3’), Nrp2 (forward, 5’-TGTTCGAGGGAGTGA TAGGG-3’; reverse, 5’-CAGAAGCGA TCCAGACACAA-3’), Lyve-1 (forward, 5’-TTCCCTCGCCTCTATTTGGAC-3’; reverse, 5’-ACGGGTAAATGTGGTAAC-3’), and Gapdh (forward, 5’-AAGGTCGCTGTGAACGGATTTGCC- 3’; reverse, 5’-AAGGTTGAAGAGTGGAGTTGCTG-3’).

Measurement of LEC number
Whole-mount double fluorescence confocal microscopy of embryonic back skin using antibodies to Prox1 and VEGFR3 at E15.5 was performed, and the number of Prox1+ LEC nuclei was counted. The number per analyzed area of skin is presented.

Mice
Sema3E+/− (Gu et al., 2005) strain was obtained from the European Mutant Mouse Archive (EMMA). EIIa-Cre deleter (Lakso et al., 1996) and Rosa26flxed-lacZ/+ (Soriano, 1999) Cre reporter strains were obtained from the Jackson Laboratory. A colony of mice heterozygous for Sema3E+/−, EIIa-Cre, or Rosa26flxed-lacZ/+ was maintained in the C57BL/6 genetic background as described previously. For
Sema3G-deficient mice, Sema3Gtm1(KOMP)Vlcg mouse strain generated by VelociGene (project ID: VG10084) (Valenzuela et al., 2003) was obtained from the Knockout Mouse Project (KOMP) Repository. The floxed hUbCpro-neo-pA cassette was removed by crossing with an EIIa-Cre deleter strain, and the EIIa-Cre allele was removed by crossing with C57BL/6 mice before phenotypic analysis of Sema3G-deficient mice. We designate heterozygous mice carrying the targeted locus without hUbCpro-neo-pA cassette as Sema3GlacZ/+. Genotyping of Sema3GlacZ/+ mice was performed by PCR analysis of tail DNA or yolk sac at an annealing temperature of 65°C with the following primers, Sema3GFwd, 5' - TAGCTGCACGGGCA TTGAGC - 3'; Sema3GRev, 5' - CCCACA TGGAACAGAAGGCT - 3'; and LacInZRev, 5' - GTCTGTCCTAGCTTCCTCAGT-3'. The wild-type allele gave a 269-bp band, whereas the mutant allele gave a 345-bp band. The following primers were used for the genotyping of neo (neo-Fwd, 5'-CGGCTATGACTGGGCACAACAGAC-3' and neo-Rev, 5'-CTTCGTCCAGATCAGTCTGAC-3'; 422-bp band), and Cre (Cre-Fwd, 5'-AAATTGCCCAGGATCAGGTTAAAG-3' and Cre-Rev, 5'-AGAGTCATCCTTAGCGCCGTAAAAT-3'; 311-bp band).

X-gal Staining

Whole-mount embryos were dissected and fixed overnight in 100 mM sodium phosphate (pH 7.3) with 2 mM MgCl\textsubscript{2} (basal buffer) containing 0.2% glutaraldehyde and 5 mM ethylenediaminetetraacetic acid at 4°C. Back skin was peeled off and further fixed at 4°C for 3 h. For X-gal staining followed by immunohistochemistry, whole-mount embryos were fixed in 1% PFA/PBS for 1 h at 4°C and back skin was peeled off. The specimens were washed three times with basal buffer containing 0.02% Nonidet P-40 at room temperature for 15 min, and then developed overnight with basal buffer containing 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-galactoside (Nacalai tesque), 5 mM potassium ferrocyanide, and 5 mM potassium ferricyanide at 4°C. Stained back skins were flat-mounted on slide glasses and analyzed by IX81 (Olympus). Background staining was minimal in wild-type control back skin (data not shown).
SUPPLEMENTAL REFERENCES

