<table>
<thead>
<tr>
<th>タイトル (Title)</th>
<th>The law of the iterated logarithm for the discrepancies of a permutation of {n (k) x}</th>
</tr>
</thead>
<tbody>
<tr>
<td>著者 (Author(s))</td>
<td>Fukuyama, Katusi</td>
</tr>
<tr>
<td>掲載誌・巻号・ページ (Citation)</td>
<td>Acta Mathematica Hungarica, 123(1-2): 121-125</td>
</tr>
<tr>
<td>刊行日 (Issue date)</td>
<td>2009-04</td>
</tr>
<tr>
<td>資源タイプ (Resource Type)</td>
<td>Journal Article / 学術雑誌論文</td>
</tr>
<tr>
<td>版区分 (Resource Version)</td>
<td>author</td>
</tr>
<tr>
<td>権利 (Rights)</td>
<td>© Akadémiai Kiadó 2008</td>
</tr>
<tr>
<td>DOI</td>
<td>10.1007/s10474-008-8067-9</td>
</tr>
<tr>
<td>JaLCDOI</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://www.lib.kobe-u.ac.jp/handle_kernel/90003837</td>
</tr>
</tbody>
</table>

PDF issue: 2019-01-02
The law of the iterated logarithm
for the discrepancies of a permutation of \{n_k x\}

KATUSI FUKUYAMA (Kobe)

Abstract. For any unbounded sequence \{n_k\} of positive real numbers, there exists a permutation \{n_{\sigma(k)}\} such that the discrepancies of \{n_{\sigma(k)} x\} obey the law of the iterated logarithm exactly in the same way as the uniform i.i.d. sequence \{U_k\}.

1. Introduction
In the theory of uniform distribution, the following two types of discrepancies of a sequence \{x_k\} of real numbers are frequently used:

\[D_N(x_k) = \sup_{0 \leq a' < a < 1} \left| \sum_{k=1}^{N} f_{a',a}(x_k) \right|; \quad D^{*}_N(x_k) = \sup_{0 \leq a < 1} \left| \sum_{k=1}^{N} f_{0,a}(x_k) \right|, \]

where \(f_{a',a}(x) = 1_{[a',a)}(\langle x \rangle) - (a-a') \) denotes the indicator function of \([a',a)\) and \(\langle x \rangle \) denotes the fractional part \(x - \lfloor x \rfloor \) of real number \(x \).

We are interested in the asymptotic behavior as \(N \to \infty \) of discrepancies. For uniform i.i.d. \{U_k\}, the law of the iterated logarithm holds (Cf. [4]):

\[\lim_{N \to \infty} \frac{N D_N(U_k)}{\sqrt{2N \log \log N}} = \frac{1}{2} \text{ a.s.} \]

Assuming the Hadamard’s gap condition \(n_{k+1}/n_k > q > 1 \), Philipp [5, 6] proved the following asymptotic property and solved the Erdős-Gál conjecture:

\[\frac{1}{4\sqrt{2}} < \lim_{N \to \infty} \frac{N D_N(n_k x)}{\sqrt{2N \log \log N}} \leq C_q \quad \text{a.e.,} \]

where \(C_q \) is a constant depending only on \(q \). For special sequence \(\{2^k\} \), exact law of the iterated logarithm below is proved in [3]:

\[\lim_{N \to \infty} \frac{N D_N(2^k x)}{\sqrt{2N \log \log N}} = \lim_{N \to \infty} \frac{N D^{*}_N(2^k x)}{\sqrt{2N \log \log N}} = \frac{\sqrt{42}}{9} \quad \text{a.e.} \]

For uniform i.i.d. \{U_k\}, the law of the iterated logarithm for discrepancies holds for every permutation of \{U_k\}.

In a recent literature [2], Berkes, Philipp and Tichy made a remark that Philipp’s asymptotic property above is permutation-invariant under Hadamard’s gap condition, i.e., it remains valid if we permute the order of \(\{n_k\} \). Relating to this remark, we show that the values of \(\limsup \) itself are not permutation-invariant in general.

Keywords: discrepancies, law of the iterated logarithm Subject class: Primary 10K30, Secondary 11K38, 42A55, 60F15
Theorem. For any unbounded sequence \(\{n_k\} \) of positive real numbers, there exists a bijective transformation \(\sigma \) on \(\mathbb{N} \) such that

\[
\lim_{N \to \infty} \frac{N D_N \{n_{\sigma(k)} x\}}{\sqrt{2N \log \log N}} = \lim_{N \to \infty} \frac{N D_N^* \{n_{\sigma(k)} x\}}{\sqrt{2N \log \log N}} = \frac{1}{2} \quad \text{a.e.}
\]

For the sequence \(\{2^k\} \) and \(a = 2, 3, \ldots \), there exists a \(\sigma \) with

\[
\lim_{N \to \infty} \frac{N D_N \{2^{\sigma(k)} x\}}{\sqrt{2N \log \log N}} = \lim_{N \to \infty} \frac{N D_N^* \{2^{\sigma(k)} x\}}{\sqrt{2N \log \log N}} = \frac{1}{2} \sqrt{\frac{(2^a + 1)2^a(2^a - 2)}{(2^a - 1)^3}} \quad \text{a.e.}
\]

In this theorem, \(\{n_k\} \) may not be integers nor increasing.

2. LIL for the case of large gap

In this section we prove the proposition below.

Proposition. For any sequence \(\{n_k\} \) of positive real numbers satisfying \(n_{k+1}/n_k \to \infty \), we have

\[
\lim_{N \to \infty} \frac{N D_N \{n_k x\}}{\sqrt{2N \log \log N}} = \lim_{N \to \infty} \frac{N D_N^* \{n_k x\}}{\sqrt{2N \log \log N}} = \frac{1}{2} \quad \text{a.e.}
\]

Proof: By applying the result by Berkes [1], for any \(a' < a \), we have

\[
\lim_{N \to \infty} \frac{1}{\sqrt{2N \log \log N}} \left| \sum_{k=1}^{N} f_{a',a}(n_k x) \right| = \|f_{a',a}\|_2 = \sqrt{(a - a')(1 - (a - a'))}.
\]

Hence we can verify

\[
\lim_{N \to \infty} \frac{1}{\sqrt{2N \log \log N}} \left| \sum_{k=1}^{N} f_{2^{-L}I',2^{-L}I}(n_k x) \right| = \frac{1}{2} \quad \text{a.e.}
\]

Put \(\Psi_{L,I,N}(x) = \sup_{0 \leq a < 2^{-L}} \left| \sum_{k=1}^{N} f_{2^{-L}I',2^{-L}I+a}(n_k x) \right| \). In the same way as the proof in section 3 of [3], which originated to [5], we can prove

\[
\lim_{N \to \infty} \frac{\Psi_{L,I,N}(x)}{\sqrt{2N \log \log N}} \leq C 2^{-L/8} \quad \text{a.e.} \quad (L \in \mathbb{N}, I = 0, \ldots, 2^L - 1).
\]

On the other hand, we can easily verify the approximation inequality below:

\[
\left| \sup_{0 \leq a' < a < 1} \sum_{k=1}^{N} f_{a',a}(n_k x) - 2^{L-1} \max_{I' = 0} \max_{I = 1}^{I'} \sum_{k=1}^{N} f_{2^{-L}I',2^{-L}I}(n_k x) \right| \leq 2 \max_{I = 0}^{2^{L-1}} \Psi_{L,I,N}(x)
\]

By combining these and letting \(L \to \infty \), we have the conclusion. As to \(D_N^* \), we can prove our result in the same way.
3. Proof of the Theorem

Since \(\{n_k\} \) is unbounded, we can take a subsequence \(\{n_{i_k}\} \) such that \(n_{i_{k+1}}/n_{i_k} \geq k \). We make a subsequence \(\{n_{j_k}\} \) by removing \(\{n_{i_k}\} \) from \(\{n_k\} \). Hence we have divided \(\{n_k\} \) into two subsequences \(\{n_{i_k}\} \) and \(\{n_{j_k}\} \).

Let us define \(\sigma \) as follows. Put \(\sigma(j_k) = k(k+1)/2 \). For \(l = 1, 2, \ldots \) and \(k \) satisfying \((l-1)l/2 < k \leq l(l+1)/2 \), put \(\sigma(i_k) = k + l \), which varies over \(l(l+1)/2 + 1, \ldots , (l+1)(l+2)/2 - 1 \). We can verify that \(\sigma \) is bijective transformation on \(\mathbb{N} \), and that \(b_N := \#\{k \mid \sigma(j_k) \leq N\} = O(\sqrt{N}) \).

By definition of \(\sigma \), we have

\[
\sum_{k=1}^{N} f_{a',a}(n_{\sigma(k)} x) = \sum_{k=1}^{N-b_N} f_{a',a}(n_{i_k} x) + \sum_{k=1}^{b_N} f_{a',a}(n_{j_k} x).
\]

Since the last term is of \(O(b_N) = O(\sqrt{N}) \), by definition of \(D_N \), we have

\[
ND_N\{n_{\sigma(k)} x\} = (N - b_N)D_N\{n_{i_k} x\} + O(\sqrt{N}).
\]

It also holds for \(D_N^* \). Since \(\{n_{i_k}\} \) satisfies the condition of Proposition, we have

\[
\lim_{N \to \infty} \frac{ND_N^*\{n_{i_k} x\}}{\sqrt{2N \log \log N}} = \lim_{N \to \infty} \frac{ND_N\{n_{i_k} x\}}{\sqrt{2N \log \log N}} = \frac{1}{2} \text{ a.e.}
\]

Thanks to \(b_N = O(\sqrt{N}) \), we have \(N - b_N \sim N, \sqrt{N} = o(\sqrt{2N \log \log N}) \), and \(\sqrt{2N \log \log N} \sim \sqrt{2(N - b_N) \log \log (N - b_N)} \), we have the conclusion.

For the binary sequence \(\{2^k\} \), put \(i_k = ak \) and define \(\{j_k\} \) and \(\sigma \) as above. As to the sequence \(\{2^{ak}\} (a = 2, 3, \ldots) \), we have the LIL below (Cf. [3]).

\[
\lim_{N \to \infty} \frac{ND_N\{2^{ak} x\}}{\sqrt{2N \log \log N}} = \lim_{N \to \infty} \frac{ND_N^*\{2^{ak} x\}}{\sqrt{2N \log \log N}} = \frac{1}{2} \sqrt{\frac{(2^a + 1)2^a(2^a - 2)}{(2^a - 1)^3}} \text{ a.e.}
\]

Hence we have the conclusion in the same way.
References

DEPARTMENT OF MATHEMATICS
KOBE UNIVERSITY
ROKKO KOBE 657-8501 JAPAN
E-MAIL: fukuyama@math.kobe-u.ac.jp