<table>
<thead>
<tr>
<th>学位論文題目</th>
<th>原子炉圧力容器の設計規格への弾塑性有限要素解析の導入に関する研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>氏名</td>
<td>朝田, 誠治</td>
</tr>
<tr>
<td>専攻分野</td>
<td>博士（工学）</td>
</tr>
<tr>
<td>学位授与の日付</td>
<td>2009-03-06</td>
</tr>
<tr>
<td>資源タイプ</td>
<td>Thesis or Dissertation / 学位論文</td>
</tr>
<tr>
<td>報告番号</td>
<td>乙3051</td>
</tr>
<tr>
<td>URL</td>
<td>http://www.lib.kobe-u.ac.jp/handle_kernel/D2003051</td>
</tr>
</tbody>
</table>

※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

PDF issue: 2020-03-06
神戸大学博士論文

原子炉圧力容器の設計規格への
弾塑性有限要素解析の導入に関する研究

平成21年1月

朝田 誠治
4.4.2 解析方法 ... 41
4.4.3 評価結果 ... 42
4.5 二次応力に対する FEM 解析の応力分類と熱応力ラチェット 43
4.6 疲労評価及び簡易弾塑性解析（Ke 係数） 44
4.7 結 言 ... 45
4.8 参考文献 ... 46

5. 一次荷重に対する設計手法 .. 61
5.1 緒 言 ... 61
5.2 ASME B&PV Code における極限解析の考え方 61
5.2.1 経 緯 ... 61
5.2.2 各塑性荷重の定義 ... 61
5.2.3 崩壊圧力の評価 ... 62
5.2.4 崩壊圧力の比較 ... 63
5.2.5 ひずみ制限と延性要求 ... 64
5.2.6 まとめ ... 64
5.3 穴あき鏡板に対する極限解析 ... 65
5.3.1 3 次元 FEM モデルに対する極限解析の適用 65
5.3.2 解析モデル ... 66
5.3.3 降伏点及び等価剛性 .. 66
5.3.4 穴あき鏡板の崩壊解析 .. 66
5.4 一次荷重に対する評価方法 ... 68
5.5 結 言 ... 69
5.6 参考文献 ... 69

6. 繰返し荷重に対する設計手法 .. 79
6.1 緒 言 ... 79
6.2 シェイクダウン評価の判定基準 ... 79
6.2.1 方針 ... 79
6.2.2 一様シェル部（円筒部） .. 79
6.2.3 材料の局部的不連続 .. 81
6.2.4 局部的構造不連続、総体的構造不連続及びノズルコーナ部 82
6.3 熱応力ラチェット評価の判定基準 ... 82
6.4 判定基準に対する検証解析 ... 83
6.4.1 検証解析 ... 83
6.4.2 平底容器に対する検証解析 ... 83
6.4.3 鏡に付くノズルと円筒胴に付くノズル .. 85
6.5 結 言 .. 87
6.6 参考文献 ... 88

7. 疲労評価及び簡易弾塑性解析に対する設計手法 99
7.1 結 言 .. 99
7.2 疲労評価に用いる応力変動幅 ... 99
7.3 簡易弾塑性解析 ... 100
 7.3.1 Ke 係数 .. 100
 7.3.2 Ke 評価式の開発 ... 101
7.4 結 言 .. 107
7.5 参考文献 ... 108

8. 弾塑性 FEM 解析を用いた原子炉圧力容器設計手法の体系化 123
8.1 結 言 .. 123
8.2 一次荷重に対する許容基準 .. 123
8.3 シェイクダウン評価 .. 124
8.4 熱応力ラチェット評価 .. 125
8.5 疲労評価 ... 126
8.6 結 言 .. 129
8.7 参考文献 ... 129

9. 結 論 .. 135

付録－1：用語集 ... 139

付録－2：原子炉圧力容器の破壊様式と破壊防止評価 143

発表論文 .. 147

謝 辞 .. 149
1. 緒 論
1.1 本研究の背景

ASME, Boiler and Pressure Vessel Code (以降、「ASME B&PV Code」と略称)において1963年にSection III (以降、「ASME Sec.III」と略称)が発行され、軽水炉プラントの原子力機器の設計規格が初めて制定された。そして、各国の原子力機器に対する設計規格がASME Sec.IIIをベースにして策定されてきた。その後、ASME Sec.IIIは1971年版で大幅な内容改訂が行われたが、それ以降は大幅な改定もなく、現在に至っている。

その中で、原子炉圧力容器のようなクラス1機器(第一種機器)の設計に対しては"Design by Analysis"と呼ばれる方法が取り入れられた。この考え方は使用条件下における破損様式に対応して設計上の発生応力等に許容基準を設け、詳細な解析によってこの許容基準を満足させるように設計することで構造物の健全性を確保しようとするものである。

原子炉圧力容器設計の破損様式で主たるものは、延性破壊(塑性崩壊)、過大な塑性変形及び疲労損傷があげられ、これらの考え方には材料の塑性挙動の考え方に基づいている。ASME Sec.IIIにおける許容基準はこのような塑性挙動の考え方に取り込み、構築された。

ASME Sec.IIIが発行された当時は、現在のようなコンピュータや有限要素法(FEM)が十分に使用できる環境にはなく、シェル理論等の古典的な弾性解析による評価手法が一般的に用いられていた。弾性解析結果を塑性挙動に基づく許容基準と対応させるために応力分類(stress classification)という方法が導入された1-3。応力分類は、弾性解析で得られた板厚内の応力分布の平均値を膜応力、応力分布の膜応力からの変化分を曲げ応力に分け、それらをその発生原因・性質に基づき分類し、許容値体系と組み合わせる方法である。

ASME Sec.IIIには、このような弾性解析を用いた応力分類に基づく許容値体系だけではなく、その許容値体系を構築する基になった塑性挙動に対する考え方を弾塑性解析を用いて直接評価する手法も取り込まれている。これにより、ASME Sec.IIIでは弾性解析による許容値を満足しない場合でも、塑性挙動に基づく弾塑性解析評価を行い、許容値を満足すればよいこととなしており、一貫した思想の下での規定となっている。

しかしながら、告示501号の第1種容器に対する規定には弾性解析による許容値体系のみが取り込まれ、最高使用圧力及び機械的荷重に対する極限解析評価が炉心支持構造物に取り込まれたとどまった。

国内でも当初はシェル理論等に基づく応力解析が主に用いられたが、次第にコンピュ
ータ等のハード面が整備され、FEM解析が設計に使用できるようになってきた。シェル理論により得られる応力は膜応力と曲げ応力であり、応力分類による許容値体系に合致したものとなっている。FEM解析結果に対して同様の応力分類を実施するためには、解析で得られた板厚内の応力分布に対して等価線形処理を行い、膜応力と曲げ応力を求める必要がある。特に複雑な構造や3次の構造になるときシェル理論では想定していない局所的な応力も含まれた応力分布となるため、FEMで得られた応力分布を単純に等価線形化処理して膜応力と曲げ応力を求め、それらを用いて応力分類することは過度に保守側の評価となる場合がある。

そこで、FEM解析、特に3次のFEM解析で得られた応力分布をもとに構造物の強度評価を適切に行える手法を国内で開発する必要がでてきた。それを検討するために社団法人・日本高圧力技術協会（HPI）の研究専門部会として「3次のFEM応力評価研究委員会（TDF委員会）」（現委員長：神奈川工科大学・西口磯春教授）が1993年に設立され、現在も活動が継続されている。

そのTDF委員会の成果として「有限要素法による構造解析結果の評価基準」の原案（以降、「代替基準案」と略称）が策定された。原子力プラントのクラス1容器等の設計への適用の観点から、その代替基準案の妥当性を検討し、日本機械学会・発電用原子力設備規格に取り込むため、社団法人・火力原子力発電技術協会に「弾塑性解析活用設計基準検討会（EPD基準検討会）」（委員長：東京大学・朝田泰英名誉教授）が2002年2月〜2003年10月初めに設けられた。

その検討成果を基に、社団法人・日本機械学会・発電用設備規格委員会において弾塑性設計に基づく設計基準の規格が検討され、発電用原子力設備規格に設計・建設規格の事例規定として、「弾塑性有限要素解析を用いたクラス1容器に対する強度評価の代替規定」（NC-CC-005）[1-4]（以降、「EPD事例規格」）が2008年3月に制定された。

1.2 国内外の動向

ASME B&PV Codeの規格委員会の中でFEM解析を用いた評価手法についても検討されてきている。弾性解析に基づく応力評価については、例えば、Companion Guide to the ASME (Volume 1)[1-5]に応力分布に対する応力分類の基本的な考え方が示されている。また、弾塑性FEM解析を用いた設計についても検討がなされており、Lehigh大学・Kalnins教授から弾塑性FEM解析を用いた設計評価方法のTutorial[1-6, 7]が出版されている。

ASME B&PV Codeとしては、Unfired Pressure Vesselsに対する規格であるASME Section VIIIのDivision 2 (Alternative Rules)の2007年版にそれまでのB&PV委員会において検討してきた最新のDesign by Analysisの手法を取り込み、全面的に規定を書き直した。その中の弾塑性解析を用いた場合の評価方法については、例えば塑性崩壊は、ASME Sec.IIIでは1.5Smを降伏点として崩壊荷重を求め、その荷重を2/3倍することで
許容荷重を求めるが、2007年版 Sec.VIII, Div.2では降伏点は1.5Smにするとともに、与える荷重も1.5倍とした。これは、現行のSec.IIIの方法では、後述するとおり非保守側になる場合があるので改訂されたものと考えられる。EPD事例規格では荷重に対してSmを降伏点として崩壊解析をすることとしており、ASME Sec. VIII, Div.2の方法はEPD事例規格と等価である。また、熱応力ラチェット評価に関しては、2007年版Sec.VIII, Div.2では板厚内に塑性挙動を示さない弾性核を有することが規定されている。EPD事例規格でも同様の弾性核に対する規定も取り込んでおり、さらに塑性ひずみ増分を用いた評価手法も規定した。このようにEPD事例規格と2007年版Sec.VIII, Div.2とは共通点がある。これは、ASME側の研究成果及びTDF委員会・EPD検討会での研究成果を、ASME Pressure Vessels & Piping Conferenceにおいてお互いに報告し、情報交換してきたことによる。なお、ASME Sec.IIIにおいてはこれらの最新手法はまだ取り込まれていないが、規格委員会の中で検討項目にあげられている。

国内では、弾塑性解析に基づく設計は高速炉設計において適用された[1-10]。高速炉設計ではクリープを生じうる温度域のため、クリープラチェットやクリープ疲労を取り扱う必要性があるため取り込まれた。

国内での軽水炉プラントに対しては1.1節に記載したとおりである。

1.3 本研究の目的と構成

本研究では、軽水炉プラントの原子炉圧力容器の構造設計に対して弾塑性FEM解析に基づく設計手法を策定することを目的に、塑性崩壊、シェイクダウン、熱応力ラチェット及び疲労評価に対して弾塑性FEM解析を用いる場合の新しい設計手法を検討し、その体系化を行った。

本論文の第2章以降の構成を以下に示す。

第2章「原子炉圧力容器に対する設計規格」においては、原子炉圧力容器設計に適用されるDesign by Analysisの考え方について述べ、破損様式と破壊防止評価の考え方及びクラス1容器に対する応力評価の考え方について述べる。

第3章「設計に用いる弾塑性理論と弾塑性解析」においては、弾塑性理論としてJ2流

- 3 -
第4章「原子炉圧力容器の古典的な設計手法とその課題」においては、弾性FEM解析結果に従来の応力分類を用いる場合の課題を抽出する。そこで、FEM解析に基づく一次応力評価に対して、皿型鏡モデルを対象に、応力分類により評価した場合と弾完全塑性体を仮定した弾塑性FEM解析（極限解析）により崩壊荷重を評価する場合について検討する。また、PWR原子炉容器蓋用管段を例として、極限解析を用いて一次応力評価に対する応力分類を解釈する方法を検討する。さらに、一次+二次応力評価及び疲労評価（簡易弾塑性解析）に対するFEM解析結果の適用性についても検討する。

第5章「一次荷重に対する設計手法」においては、第4章で策定した対応方針を受け、塑性崩壊に対する評価に弾塑性FEM解析を用いた極限解析を適用する方法を検討する。まず、ASME B&PV Codeにおける極限解析の考え方をまとめる。次に、具体的な3次元モデルの例として穴あき鏡板に対して極限解析を行い、その適用性を検討する。それらの検討結果に基づき、一次荷重に対する評価方法を策定する。

第6章「繰返し荷重に対する設計手法」においては、第4章で策定した対応方針を受け、繰返し荷重に対する評価のうち、シェイクダウン及び熱応力ラチェットの評価に対して応力分類が不要な評価方法を検討する。具体的には、現行の一次+二次応力に対する3Sm規定やMiller線図の考え方を踏まえ、シェイクダウン評価及び熱応力ラチェット評価の判定基準を設定する。原子炉圧力容器の構造部位にその考え方を適用した検証計算を行い、その妥当性を検証する。

第7章「疲労評価及び簡易弾塑性解析に対する設計手法」においては、疲労評価及び簡易弾塑性解析に対して応力分類が不要な方法を検討する。ここで、疲労評価は設計上想定した数多くの荷重サイクルを対象としており、一意的には発生する荷重サイクルの順番は決められない。弾塑性解析は荷重履歴の影響を受けるため、厳密には過渡条件の順番が結果に影響を及ぼすので、全ての過渡条件を対象に弾塑性FEM解析を実施することは現実的ではない。そこで、基本的には現行の規格と同様に弾性解析による応力を用いて応力の変動幅が最大となる組合せから順に疲れ累積係数を計算し、疲労評価を行うこととする。疲れ累積係数を計算する荷重サイクルの組合せが塑性サイクルを生じる場合に簡易弾塑性解析を適用することとし、表面の応力を用いて評価する方法を検討する。また、本評価では現行の規格で用いられているTresca応力ではなくMises応力を用いる。そこで、疲労評価で必要となる応力の変動幅にMises応力を用いる場合の計算方法を検討する。

第8章「弾塑性FEM解析を用いた原子炉圧力容器設計手法の体系化」においては、以上の検討結果を踏まえて、弾塑性FEM解析を用いた場合の評価手法の体系化を行い、塑性崩壊、シェイクダウン、熱応力ラチェット及び疲労評価の許容基準を策定する。

第9章「結論」においては、以上の検討結果をまとめ、本論文の結論を示す。
1.4 参考文献

2. 原子炉圧力容器に対する設計規格

2.1 緒 言
原子炉圧力容器に用いる設計規格は、米国には ASME Sec.IIIが存在し、国内でもそれに対応する規格として現在では日本機械学会 発電用原子力設備規格 設計・建設規格（以降、「JSME 設計・建設規格」と略称）が整備されている。

本章では、原子炉圧力容器に用いる設計規格の経緯及びクラス1容器の代表機器である原子炉圧力容器（図 2-1）を例に、JSME 設計・建設規格でのクラス1容器の応力評価の考え方を述べる。なお、その評価の考え方の基になる原子炉圧力容器の破壊様式と破壊防止評価を参考に付録-2に示す。

2.2 設計規格の経緯
原子炉圧力容器等の圧力容器及び配管に対する設計規格である ASME Sec.III は1963年に発行された。また、原子力機器の供用期間中検査、維持基準に対する規格である Section XIは1970年に発行された。一方、国内では、1963年版の ASME Sec.IIIをベースに、告示501号が1970年（昭和45年）に発行された。

ここで、発電用原子力設備に関する技術基準（省令第62号）は、2006年1月に改訂されるまでは第9条で容器等の構造物の材料及び構造は別に定める告示によるとの規定があり、それを受けて告示501号が制定された。しかし、省令第62号は構造材料等の満たすべき必要事項または要求される性能水準のみを規定するように2006年1月に改定され、それを満たす仕様規格の選択を事業者に委ねるようになった。規制側は仕様規格として技術評価を行った上で学協会規格の適用を認めることとなった。

それに伴い告示501号は廃止され、告示501号に代わる構造基準として、JSME設計・建設規格が2001年に発行され、原子力安全保安院の技術評価を受け、原子力発電所設備の設計に用いることができるようになった。JSME設計・建設規格はそれ以降も適宜、改定や追補版が発行されている。

ASME Sec.III及びJSME設計・建設規格においては、機器はその重要度によりクラス分けされ、原子炉圧力容器はクラス1容器に分類される。クラス1とそれ以外（クラス2、3）の容器に対する設計の考え方の基本的な違いは、クラス1容器に対する設計はDesign by Analysis（解析による設計）であり、それ以外の容器に対する設計はDesign by
2.3 クラス1容器に対する応力評価

ASME Sec.III 及びJSME設計・建設規格では、クラス1容器に対しては、起こり得る破壊様式を考え、各々に対して解析によって構造物の健全性を評価し、定められた許容基準を満足することが求められている。この考え方を解析による設計(Design by Analysis)という。

以下に、Design by Analysisに基づくクラス1容器に対する基本的な応力評価の考え方を示す。

(1) 応力強さ

原子炉圧力容器は内圧による応力と内部流体の温度変化による熱応力により多軸応力状態になる。多軸応力状態における降伏条件を取り扱う強度理論として、代表的なものは最大せん断応力説(Tresca 応力説)とせん断ひずみエネルギー説(Mises 応力説)がある(図2-2)。これらの強度理論の設計規格への取り込みに対して、ASME Sec.IIIのDesign by Analysisの根拠資料[2-6]によると以下のように述べられている。

「原子炉圧力容器材料に使用するような延性材料に対しては、Tresca 応力説と Mises 応力説の両者が最大主応力説に比較して降伏と疲労評価への適用性がよいことが知られている。Tresca 応力説と Mises 応力説の比較ではほとんどの実験が Mises 応力説がより正確であることを示していたが、主として簡便性の理由から Tresca 応力説が採用された。また、応力振幅に Tresca 応力を使用する理由は、符号を考慮して振幅を求め緩の簡便さがあげられる。」

したがって、ASME Sec.IIIではMises 応力説を否定しているわけではなく、本章では詳細は割愛するが ASME Sec.III 及びJSME 設計・建設規格の純せん断応力に対する許容値に Mises 応力説の考え方が採用されている。なお、上記の根拠資料では Tresca 応力を使用する理由の一つとして符号が考慮できることがあげられているが、ASME Sec.IIIでも後述するように Tresca 応力の符号を使わなくても応力強さの変動幅を求める方法("Varying Principal Stress Direction"による方法)が規定されており、必ずしも符号が考
(2) 運転状態と供用状態

JSME設計・建設規格では、プラントの運転状態は、原子炉施設の運転状況に応じて運転状態I、運転状態II、運転状態III、運転状態IV及び耐圧試験状態に分類され、運転状態I、運転状態II、運転状態III及び運転状態IVは以下のように定義される。

・運転状態I：原子炉施設の通常運転時の運転状態をいう。なお、ここで通常運転とは、運転計画等で定める起動、停止、出力運転、高温待機、燃料取替等の原子炉施設の運転をいう。

・運転状態II：運転状態Iから逸脱した運転状態であって、運転状態III、運転状態IVおよび耐圧試験状態以外の状態をいう。

・運転状態III：原子炉施設の故障、異常な作動等により原子炉の運転の停止が緊急に必要とされる運転状態をいう。

・運転状態IV：原子炉施設の安全性を評価する観点から異常な状態を想定した運転状態をいう。

また、供用状態とは、原子炉施設の機器等が各運転状態において受ける圧力荷重および機械的荷重をもとに、設計仕様書等で定めた機器等に加わる負荷状態を示し、設計条件、供用状態A、供用状態B、供用状態C、供用状態D及び試験状態に分類され、以下のように定義される。

・設計条件：対象とする機器等に設計仕様書等で規定された最高使用圧力および設計機械的荷重が負荷されている状態をいう。

・供用状態A：対象とする機器等がその主たる機能を満たすべき運転状態において設計仕様書等で規定された圧力および機械的荷重が負荷された条件下にある状態をいう。

・供用状態B：対象とする機器等が損傷を受けることなく、健全性を維持しなければならない、と設計仕様書等で規定された圧力および機械的荷重が負荷された条件下にある状態をいう。

・供用状態C：対象とする機器等が構造不連続部等においては大変形を生じてもよい、と設計仕様書等で規定された圧力および機械的荷重が負荷された条件下にある状態をいう。

・供用状態D：対象とする機器等が全断面にわたって大変形を生じてもよい、と設計仕様書等で規定された圧力および機械的荷重が負荷された条件下にある状態をいう。

・試験状態：対象とする機器等に耐圧試験圧力が負荷されている状態をいう。

「供用状態」は機器等の応力評価を行うにあたって考慮する負荷条件の状態を示すものであり、プラントの運転状態を示す用語である「運転状態」とは異なる用語である。このため、対象とする機器によって各供用状態で考慮する運転状態は異なってくる場合があ
原子炉圧力容器の場合は運転状態I、運転状態II、運転状態III及び運転状態IVと
供用状態A、供用状態B、供用状態C及び供用状態Dは各々対応するが、安全系の機器
の場合は、事故時ののような運転状態IVの場合に主たる機能を持つ必要があるため、運転
状態IVに対する荷重条件に供用状態Aの評価を行うこととなる。

(3) 一次応力評価

荷重制御型応力を一次応力と呼びそれに対する評価を一次応力評価と呼ぶ。

原子炉圧力容器としては、耐圧機能がもっとも重要であり、一次応力評価により塑性
崩壊(ひいてはバースト)をしないように設計する必要がある。ここで、図2-3(1)に示すよ
うに、棒に対して引張荷重が生じる場合を考える。弾性塑性体を仮定すると、発生応
力が降伏点を超えるとその棒は荷重制御型の一次応力により塑性崩壊する。

一方、曲げ応力に対しては表面の応力強さが降伏点を超えても棒は塑性崩壊するわけ
ではない。図2-3(2)に示すように、表面が降伏点を超えても板厚内部に弾性域が存在する
場合もある。この場合、モーメントが増加しても棒は塑性崩壊せず、発生するひずみは
有限である。さらにモーメントが増加し、板厚内の弾性域がなくなった場合にその棒は
塑性崩壊する。ここで、矩形の棒の塑性崩壊するモーメントは、表面が降伏点になると
ときのモーメントの1.5倍となる。また、矩形の棒のモーメントに対する塑性崩壊の挙動を
曲率との関係で表したものを図2-4に示す。図2-4より、表面が降伏した後は急激に
曲率が大きくなることがわかる。

以上から、一次応力評価に対しては降伏点に対応する許容値を降伏点とする極限解析
により制限すれば塑性崩壊を評価することができる。ここで、圧力容器の設計では実際に
の塑性崩壊に対して安全裕度を確保する必要があり、ASME Sec.III及びJSME設計・建
設规格の設計条件においては、その許容値を設計応力強さSmとよび、設計引張強さSuの
1/3、設計降伏点Syの2/3のいずれか小さい方の値で設定される。このSuの1/3の3
tもってDesign by Analysisの設計係数は3とされている。

また、一次応力評価は設計条件だけでなく、「供用状態C」、「供用状態D」及び「試験状
態」に対しても評価が要求される。

供用状態Cに対応する運転状態は運転状態IIIであり、原子炉施設の故障、異常な作動
等により原子炉の運転の停止が緊急に必要とされる運転状態が対象であるため、通常で
は発生しないような状態である。このような供用状態に対する許容値としては、応力集
中が生じるような構造不連続部には局所的な塑性ひずみの発生を許容するが全断面とし
ては弾性域にあることを要求し、その許容値には設計降伏点Syを用いる。これにより、
対象とする機器に対して過大な塑性変形を防ぐことができる。

供用状態Dに対応する運転状態は運転状態IVであり、原子炉施設の安全性を評価する
観点から異常な状態を想定した運転状態が対象であり、プラントの安全評価上仮想的に
想定するような状態である。このような供用状態に対する許容値としては、全断面に対
して塑性変形を許容するが、バーストに対して裕度を持った許容値とする必要があるた
め、設計引張強さ S_m の $2/3$ を許容値としている。

一次応力は膜応力と曲げ応力（「一次曲げ応力」(P_b))に分類される。さらに膜応力については、圧力または機械的荷重によって生じる膜応力であって、構造上の不連続性および応力集中のない部分のものを「一次一般膜応力」(P_m)、圧力または機械的荷重によって構造不連続部のような局部に生じる膜応力を「一次局部膜応力」(P_L)という。ここで、P_m は単純な力の釣り合いで発生する応力である。P_L は、例えば圧力により構造上の不連続で発生するような局部的な膜応力も含んだものであり、本来なら二次応力に相当するが、二次応力でも膜応力成分が存在すれば過大な変形を生じる可能性があるので保守的に一次応力とみなして制限が設けられている。ASME Sec.III 及び JSME 設計・建設規格ではこの「局部」を膜応力強さ $1.1S_m$ を超える領域が $1.0\sqrt{Rt}$ 以内（R: 平均半径、t: 板厚）で、他の局部膜応力と $2.5\sqrt{Rt}$ 以上離れていることとしている。

(3) 一次＋二次応力評価

荷重制御型応力を一次応力と呼ぶことに対して、変位制御型応力を二次応力 (Q) と呼ぶ。二次応力は変位制御型応力であり、降伏ひずみを超える荷重が生じた途端にそれが直接構造に損傷を与えるものではなく、それが繰り返されることで影響する。ここで、一次応力評価は全ての供用状態が対象であることに対して、一次＋二次応力評価の対象とする供用状態は供用状態 A 及び供用状態 B である。これらの状態は事故事象ではなく現実的に供用期間中に生じ得る状態である。二次応力は繰返し負荷される場合に対して制限する必要があり、供用状態 A 及び B を対象とする。いわゆる事故事象に対応する供用状態 C 及び D や回数が自ら限られる試験状態を対象とはしない。

一次応力評価で内圧や外荷重により生じる応力は、その部位は全体として塑性域にあり、それに二次応力を加えることで塑性域に近くなる可能性がある。図 2-5 に示すように、塑性域に入るとある荷重が繰り返され、多軸の効果により応力一ひずみ挙動は変化して行き、数回の荷重の繰返しの後に応力一ひずみの挙動は以下のように分けられる。

(a) $\varepsilon_R \leq 2\varepsilon_y$: $O \rightarrow A \rightarrow B \rightarrow A \rightarrow B$ … : 弾性挙動→シェイクダウン

(b) $\varepsilon_R > 2\varepsilon_y$: $O \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ … : ヒステリシスループ

$2\varepsilon_y$ は弾性応力では $2S_f$ になり、S_m の定義から $2S_f$ は $3S_m$ となることから、一次＋二次応力評価では $3S_m$ を許容値として用いる。したがって、一次＋二次応力が $3S_m$ を満足すればシェイクダウンし、弾性挙動を示すので、疲労評価においては弾性解析の結果をそのまま用いる。一方、$3S_m$ を満足しない場合についてはヒステリシスループによる塑性ひずみを疲労評価に考慮することが要求される。

上記の挙動は、降伏点を $1.5S_m$ とする弾完全塑性体を用いた弾塑性 FEM 解析を用いて荷重を繰返し与えることで評価することが可能である。
熱応力ラチェット評価

簡単なモデルとして、図2-6に断面積及びヤング率の等しい2本棒を考える。この2本棒は下端で常に水平な剛体に固定されており、一次応力として全体に荷重P(棒Aと棒Bを平均すると一次応力はσm)が存在している状態で、棒Aは温度一定、棒BにΔTの温度変動が生じるものとする。材料の線膨張係数をαとすると、その温度変動により発生する熱ひずみはα・ΔTとなる。一次応力のみが生じた最初の状態で棒A及び棒Bに発生する応力(σA0及びσB0)はいずれも同じ応力(σm=k・σy)である。この後、棒BにΔTの温度変動が生じた状態(0.5サイクル時点: A0.5及びB0.5)では最初の状態からα・ΔT伸び、棒Aは棒Bの熱膨張により引張り方向の熱応力が発生してσyとなる。それに対して棒Bは圧縮方向の熱応力が発生し、棒Aと棒Bを平均すれば元々生じている一次応力になるので、棒Bの応力は(2k−1)σyとなる。次に、温度差がなくなる方向になると、0.5サイクル時点で棒Aに塑性ひずみが生じたため、温度差が小さくなるにしたがって棒Bは引張り方向、棒Aは圧縮方向に応力は変化し、温度差がなくなると棒Bは降伏応力(σf)、棒Aの応力は(2k−1)σfになる(1サイクル時点: A1及びB1)。これにより棒A及び棒Bに塑性ひずみが生じ、温度差がなくなるにも塑性ひずみが残ることになる。これが繰り返されることで一方向に塑性ひずみが蓄積する。

このような事象を熱応力ラチェットと呼ぶ。その評価にASME Sec.III及びJSME設計・建設規格ではMillerが提案した手法を採用している。これは平板に対して線形温度分布と放物線温度分布を想定した場合の熱応力ラチェットの発生を評価する方法である。この評価方法による一次応力(σ1)と二次応力(σ2)の制限を図2-7に示す。σ1+σ2がSf以下であれば完全に弾性になる領域になる。また、σfが3Sσm(2Sy)以下であれば弾性シェイクダウンする領域になる。ここで、σfはSσm(2/3)Sσ以下のとき、その限界線も合わせて図に示している。Sσm制限を超え、かつラチェット制限を満足する領域は塑性シェイクダウンを示す領域となる。

上記の挙動についても、降伏点を1.5Sσmとする完全塑性体を用いた繰返しの弾塑性FEM解析により評価することが可能である。

疲労評価

疲労評価に対しては疲労線図が必要である。ここで、ASME Sec.III及びJSME設計・建設規格では、疲労線図は、図2-8に示すように疲労試験データの最適線(Best Fit Curve)に平均応力の効果を修正Goodman線図で補正した線図に対して応力(ひずみ)に1/2、繰り返し回数に1/20したものである。なお、例えば溶接残留応力を考慮すると平均応力の具体的な値を設定するのには困難であるため、応力振幅Sbが材料の降伏応力Sσより小さいときに平均応力の効果が考慮されている。具体的には、降伏応力をSσとする弾完全塑性体を仮定し、図2-9に示すように修正Goodman線図を用いて平均応力の効果を評価し、完全両振り試験により得られたSσを次のように補正して、設計疲労線図に用いる応力振幅Sσとする。
ここで、この設計疲労線図は、上記の疲労試験がひずみ制御によるものであり、それぞれにより得られたひずみに線弾性係数を乗じた見かけの応力になっていることに注意が必要である。このため、この設計疲労線図を用いて評価する場合の応力は基本的に弾性解析による応力を用いる。
一方、一次＋二次応力評価で $3S_m$ を超える場合は塑性域に入ることになる。したがって、疲労評価に用いる応力(ひずみ)は、塑性ひずみの影響を考える必要がある。例えば、図2-10に示すような弾完全塑性体を想定すると、一次＋二次応力評価で $3S_m$ を超える場合、発生する応力が完全に二次応力のみであれれば弾塑性解析を施行してもひずみはかわらない。また、完全に一次応力のみであれば崩壊することになる。しかし、一次応力は一次応力評価により弾性域に保たれ、それに二次応力が加わるので、両者のバランスで発生するひずみが決まる。そのひずみと弾性解析のひずみとの比率を Ke 係数と呼び、弾性解析で得られた応力にその Ke 係数を乗じることで補正した応力と設計疲労線図を用いて疲労評価を行う。
Ke 係数については、ASME Sec.III では単純な形状に対して設定された評価式を用いた。JSME 設計・建設規格では、原子炉圧力容器の代表的な構造に対して降伏点を $1.5S_m$ とする弾完全塑性体を用いた弾塑性 FEM 解析と弾性 FEM 解析から Ke 係数を直接求め、それらの結果に基づき改良した評価式を採用した(7.3 節参照)。
具体的な疲労評価において、設計上想定する過渡条件の種類が多く、またそれらが発生する順番は予め特定できないため、応力振幅が最大となる組合せから順に評価を行う。また、疲れ累積係数を求めるにあたっては、線形累積被害則(Miner 則)を用いて疲労評価を行う。具体的には、応力サイクル $i = 1, 2, \cdots, k$ の応力振幅 S_{abs} に対して各々の応力サイクルの繰り返し回数を $N_i(i)$ とし、S_{abs} に対して設計疲労線図から得られる許容繰り返し回数を $N_o(i)$ とすると、疲れ累積係数 U_f は次式を満足すればよい。

$$ U_f = \sum_{i=1}^{k} \frac{N_i(i)}{N_o(i)} \leq 1.0 \quad \cdots \cdOTS

最高使用圧力：175kg/cm² (17.16MPa)
最高使用温度：343℃
内 径：約4.4m
高 さ：約13m
重 量：約390ton

図2-1 原子炉圧力容器の例[2-5]

図2-2 二次元応力場の降伏条件

最大せん断応力説（Tresca応力）
\(|\sigma_1 - \sigma_2|\)

せん断ひずみエネルギー説（Mises応力）
図2-3 膜応力と曲げ応力

図2-4 矩形はりのモーメントと曲率の関係(弾完全塑性体)

図2-5 シェイクダウン
図2-6 熱応力ラチェット

図2-7 熱応力ラチェット許容限界
図2-8 設計疲労線図の考え方[2-9]

図2-9 修正Goodman線図による平均応力の補正
図 2-10 簡易弾塑性解析（Ke 係数）

図中の関係は以下の通りです。

- 弾性解析による応力
- 一次応力のみ → 崩壊
- 一次応力と二次応力が生じているので、そのバランスでひずみ量が決まる。

Ke = ε_{ep}/ε_{o}

- 弾性解析あるいは完全に二次応力のみの場合

記号:
- σ: 広義の応力
- ε: ひずみ
- ε_{o}: 一様な引張ひずみ
- ε_{ep}: ポアソン比に比例するひずみ
3. 設計に用いる弾塑性理論と弾塑性解析

3.1 緒 言
弾塑性 FEM 解析は、最近ではコンピューターの発達により設計段階でも使用できるようになった。一方、弾塑性解析にはいくつかの理論が提案されている。市販の FEM コードで一般的に用いられているのは Mises 応力と流れ理論を用いた弾塑性理論(J2 流れ理論)である。J2 流れ理論の他に代表的な理論としては J2 変形理論がある。一方、圧力容器設計に対しては基本的には弾完全塑性体をベースに許容値体系が構築されている。

本章では、応力方向が急変する場合の J2 流れ理論の適用性が問題視されているので、弾塑性理論(J2 流れ理論と J2 変形理論)が平面ひずみブロックの変形の局所化に与える影響を調べ、その結果に基づき、圧力容器の弾塑性設計に用いる弾塑性 FEM 解析手法について検討する。

3.2 弾塑性理論に基づく引張変形挙動
弾塑性理論に基づき平面ひずみブロックの引張変形挙動を解析し、構成式の形、材料特性及び変形速度がひずみ速度依存性材の変形に及ぼす影響を調べる[3-1]。

3.2.1 構成式
J2 変形理論による速度構成式は、次に示す全塑性ひずみε∗と応力σ∗の関係を時間微分して得られるひずみ速度εと応力速度σの関係として次式で得られる[3-2]。

\[
\dot{\varepsilon}^* = \frac{1}{2} \frac{\partial \sigma}{\partial \sigma^*}
\]

ただし、

\[
H = \frac{\dot{\sigma}}{\dot{\varepsilon}}, \quad H_s = \frac{\sigma}{\varepsilon}
\]

σ、σは Mises 形の相当応力とその速度、ε、εは Mises 形の相当塑性ひずみ速度とそれと積分する相当塑性ひずみである。

ここで、図 3-1 より、式(3・4)の右辺第 1 項は応力速度の降伏曲面の法線方向成分への塑性ひずみへの寄与分を表し、第 2 項は応力速度の降伏曲面の接線方向への寄与分を表す。つまり、式(3・4)は応力点において降伏曲面の法線方向に対するひずみ成分の他にそれに接する成分を有することになり、応力点において降伏曲面にとり点が存在し、偏差応力方向から外れた方向のひずみ速度で成分の表示を可能にすることができる極めて単純なモデルと考えることができる。式(3・2)で $H \rightarrow \infty$ としたとき右辺第 1 項、つまり応力速度の降伏曲面の法線方向成分のみの項となり、流れ理論による構成式[8-4]に一致する。
ので、特別な場合として流れ理論による構成式を含む。
式(3-2)が流れ理論から変形理論への変換を含む構成式を表し得ることがわかったので、流れ理論による構成式のひずみ速度依存性体の構成式への一般化[3-5]と同様にひずみ速度依存性体の粘塑性ひずみ速度成分 \(\dot{\varepsilon}_{ij} \) として、式(3-2)で表せるものを用いることにより変形理論による構成式のひずみ速度依存性体への一般化を行う。一方、弾性ひずみ速度 \(\dot{\varepsilon}_{ij} \) として

\[
\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij} + \frac{3}{2} H \frac{1}{\sigma} \sigma_{ij}' \frac{1}{2} H_s (\sigma_{ij}' - \frac{1}{\sigma} \sigma_{ij}')
\] (3-4)

ただし、\(H \) と \(H_s \) は式(3-3)に対応させて次式で表されるものとする。

\[
H = \frac{\sigma}{\varepsilon}, \quad H_s = \frac{\sigma}{\varepsilon_0}
\] (3-5)

ここで、\(\varepsilon_0 \) は Mises 形の相当粘塑性ひずみ速度とそれを積分して得られる相当粘塑性ひずみである。

式(3-4)を逆変換して応力－ひずみ速度関係式を導出すると次のようになる。

\[
\sigma_{ij} = D'_{ij} \varepsilon_{ij} - \frac{3G \varepsilon_{ij}'}{\sigma} - \frac{3G \varepsilon_{ij}'}{\sigma} - \frac{3G \varepsilon_{ij}'}{\sigma} (\sigma_{ij}' - \frac{1}{\sigma} \sigma_{ij}')
\] (3-6)

ここで、

\[
D'_{ij} = 2G \left\{ \frac{1}{2} (\delta_{ij} \delta_{ij} + \delta_{ij} \delta_{ij}) + \frac{1}{1-2\nu} \delta_{ij} \delta_{ij} \right\}
\] (3-7)

\(\delta_{ij} \) はクロネッカーのデルタ、\(\nu \) はポアソン比である。完全な応力速度－ひずみ速度関係式を求めるためには、式(3-6)の \(\sigma \) と \(\sigma_{ij}' \) をひずみ速度で表示しなければならない。そのために、

\[
\sigma = \frac{3G \varepsilon_{ij}'}{\sigma} (\sigma_{ij}' - \sigma \cdot \varepsilon_{ij}')
\] (3-8)

\[
\sigma_{ij}' = \sigma_{ij} - \frac{1}{3} \delta_{ij} \frac{2G(1+\nu)}{1-2\nu} \dot{\varepsilon}_{ij}
\] (3-9)

なる関係を式(3-6)に代入すると、次式が得られる。

\[
\sigma_{ij}' = \sigma_{ij} - \frac{1}{3} \delta_{ij} \frac{2G(1+\nu)}{1-2\nu} \dot{\varepsilon}_{ij}
\] (3-10)

ここで、

\[
p_{ij} = \frac{3\sigma_{ij}'}{2\sigma}
\]

\[
P_{ij} = D'_{ij} \cdot p_{ij}
\]

\[
L'_{ij} = \frac{H_s}{H_s + 3G} \left[\frac{D'_{ij} + 3G \left\{ \frac{1}{3} \delta_{ij} \delta_{ij} \frac{2G(1+\nu)}{1-2\nu} + \frac{3G \sigma_{ij} \sigma_{ij}'}{\sigma^2} \right\} \right]
\] (3-11)

上式より、
\[P_{ij} = \frac{3G}{\sigma} \sigma'_{ij} \]
\[L_{0ij} P_{ij} = \frac{3G}{\sigma} \sigma'_{ij} \]
\[\text{(3-12)} \]

よって、次式が得られる。
\[P_{ij} = L_{0ij} P_{ij} \]
\[\text{(3-13)} \]

式(3-13)及び式(3-14)を用いて相当応力速度式(3-8)を次式のように表現する。
\[\bar{\sigma} = P_{ij} \cdot \dot{\varepsilon}_{ij} - \tilde{\varepsilon}^p p_{ij} P_{ij} \]
\[\text{(3-15)} \]

式(3-10)で、\(H_{S} \to \infty \) とすると、
\[\bar{\sigma}'_{ij} = D_{ij} \dot{\varepsilon}_{ij} - \tilde{\varepsilon}^p P_{ij} \]
\[\text{(3-16)} \]

これは、文献[3-5]にある流れ理論を用いた場合のひずみ速度依存性体の構成式に一致する。

以上で求めた速度形の構成式に、接線係数法[3-5]を適用し、大きなひずみ増分を精度よく取り扱えるひずみ速度依存性の構成式を定式化する。なお、以下の各式は構成式(3-10)と(3-16)の差を除くと、文献[3-5]によるとものであるが、数値解析において具体形が必要になるので再記する。時刻 \(t \) と \(t + \Delta t \) における相当粘塑性ひずみ速度を \(\tilde{\varepsilon}_{ij}^p \)、\(\tilde{\varepsilon}_{ij}^p \) とすると、時間間隔\(\Delta t \) の相当粘塑性ひずみ増分 \(\Delta \varepsilon^p \) は次のように線形補間によって表示できる。

\[\Delta \varepsilon^p = \Delta t \begin{bmatrix} 1 - \theta \tilde{\varepsilon}_{ij}^p + \theta \cdot \tilde{\varepsilon}_{ij}^p \end{bmatrix} \]
\[\text{(3-17)} \]

パラメータ \(\theta \) は \(0 \leq \theta \leq 1 \) であり、特に \(\theta = 0 \) のとき式(3-17)は Euler 時間積分に一致する。\(\tilde{\varepsilon}_{ij}^p \) は \(t \), \(\bar{\sigma} \) 及び \(\tilde{\varepsilon}^p \) に依存していることに着目し、式(3-17)の \(\tilde{\varepsilon}_{ij}^p \) を時間 \(t \) において Taylor 展開し次式を得る。

\[\tilde{\varepsilon}_{ij}^p \]
\[= \dot{\varepsilon}_{ij}^p + \frac{\partial \tilde{\varepsilon}_{ij}^p}{\partial \bar{\sigma}} \Delta \bar{\sigma} + \frac{\partial \tilde{\varepsilon}_{ij}^p}{\partial \varepsilon^p} \Delta \varepsilon^p \]
\[\text{(3-18)} \]

次に、\(\Delta \bar{\sigma} \) は式(3-15)に \(\Delta t \) をかけることにより求まる。
\[\Delta \bar{\sigma} = \Delta t \cdot P_{ij} \cdot \dot{\varepsilon}_{ij} - \Delta \tilde{\varepsilon}^p p_{ij} P_{ij} \]
\[\text{(3-19)} \]

式(3-18)、(3-19)を式(3-17)に代入し、\(\Delta \varepsilon^p \) について解くと次式を得る。
\[\Delta \varepsilon^p = \Delta t \left\{ \frac{\varepsilon^p}{1 + \xi} + \frac{1}{h} P_{ij} \dot{\varepsilon}_{ij} - \frac{\xi}{1 + \xi} \right\} \]
\[\text{(3-20)} \]

ここで
\[\xi = (\theta \cdot \Delta t) \frac{\partial \tilde{\varepsilon}_{ij}^p}{\partial \bar{\sigma}} \]
\[h = p_{ij} - \left(\frac{\partial \tilde{\varepsilon}_{ij}^p}{\partial \varepsilon^p} \right)^{-1} \]
\[\text{(3-21)} \]

式(3-20)の両辺を \(\Delta t \) で割り、式(3-10)に代入すると次式を得る。
ここで、接線剛性マトリックス \(L_{ijkl}^{\text{tan}} \) は次式で表される。
\[
L_{ijkl}^{\text{tan}} = L_{ijkl}^{\prime} - \frac{1}{h} \varepsilon_{ij} P_{ij}
\]

（3-23）

上式の導出にあたり、構成式が \(\dot{\varepsilon}_{ij} \) について非線形になるのを避けるため、\(L_{ijkl}^{\prime} \) に含まれる \(H_{ij} \) の評価は、時刻 \(t \) にかける \(\dot{\varepsilon}_{ij} \)、\(\dot{\sigma}_{ij} \) によりた。

式（3-11）より、\(L_{ijkl}^{\text{tan}} \) は \(i, j \) および \(k, l \) の入れ替えに対して対称であり、さらに \(i \) および \(k \) の入れ替えに対しても対称になっていることがわかる。また、\(H_{ij} \rightarrow \infty \) とした特別な場合、構成式（3-22）は式（3-16）と同じく流れ理論による構成式に一致する。以下では、上記構成式（3-22）の応力速度 \(\dot{\sigma}_{ij} \)、ひずみ速度 \(\dot{\varepsilon}_{ij} \) を Kirchhoff の応力の Jaumann 速度 \(\varepsilon_{ij}^{\text{Jaumann}} \) と変形速度テンソル \(d_{ij} \) で置き換えることにより一般化した構成式を用いる。

さて、ここでは相当粘塑性ひずみ速度 \(\dot{\varepsilon}_{ij}^{p} \) に対する構成式として、次式を用いる。
\[
\dot{\varepsilon}_{ij}^{p} = \dot{\varepsilon}_{ij} \left[\frac{\sigma_{ij}}{g(\dot{\varepsilon}_{ij}^{p})} \right]^{1/m}
\]

（3-24）

ここで、\(\dot{\varepsilon}_{ij} \) と \(m \) は材料定数、\(g(\dot{\varepsilon}_{ij}^{p}) \) はひずみ硬化性を示す関数である。式（3-24）を式（3-21）に代入すると、\(h, \xi \) の具体形として次式を得る。
\[
\begin{align*}
\frac{\dot{\varepsilon}_{ij}^{p}}{\dot{\sigma}_{ij}} = & \left[\frac{\sigma_{ij}}{g(\dot{\varepsilon}_{ij}^{p})} \right]^{1/m} \\
\frac{\dot{\varepsilon}_{ij}^{p}}{\dot{\sigma}_{ij}} = & \left(\frac{\theta \cdot \Delta \theta \cdot h \cdot \dot{\varepsilon}_{ij}^{p}}{m \sigma_{ij}} \right) \frac{dg}{d\dot{\varepsilon}_{ij}^{p}}
\end{align*}
\]

（3-25）

3.2.2 解析条件

3.2.1 で求めた \(J_2 \) 変形理論によるひずみ速度依存性体の構成式を用いて、構成式の形式、材料特性、変形速度等が変形の局所化に及ぼす影響を調べる。解析対象は図 3-2 に示す平面ひずみ条件下で引張りを受けるブロックで、その長さと幅の比は \(L/W = 3 \) である。また、図 3-2 に示すブロックの変形におけるくびれ量を \(\nu \)、端面変位を \(u \) とする。変形の対称性を考慮して、第 1 象限の \(1/4 \) を対象とし、解析に用いる有限要素は四角形をその対角線で四つに分割し、大変形低次三角形要素の 4 つを組み合わせた Crossed Triangles 要素を用い、図 3-2 に示す要素分割により解析を行った。

ブロックの相当応力 \(\bar{\sigma} \)、相当粘塑性ひずみ \(\bar{\varepsilon}^{p} \) 、相当粘塑性ひずみ速度 \(\dot{\varepsilon}^{p} \) 関数は次式で表すことができるものとする。
\[
\bar{\sigma} = \sigma_{ij} \left(\frac{\varepsilon_{ij}^{p}}{\dot{\varepsilon}_{ij}} \right) \left(\frac{\dot{\varepsilon}_{ij}^{p}}{\dot{\varepsilon}_{ij}} \right)^{m}
\]

（3-26）
ここで、m はひずみ速度感度指数、n は加工硬化指数である。また、綫弾性係数 E、基準ひずみ速度 $\dot{\varepsilon}$、基準応力 σ_y の材料定数を次のように決める。

$$
E = 200 \text{ [GPa]} \\
\varepsilon_y = 0.002 \\
\dot{\varepsilon}_y = 0.002 \text{ [s}^{-1}] \\
\sigma_y = E \cdot \varepsilon_y
$$

(3-27)

式(3-26)から、式(3-24)の関数 $g(\varepsilon^p)$ の具体形は次式のようになる。

$$
g(\varepsilon^p) = \sigma_y \left(\frac{\varepsilon^p}{\varepsilon_y} \right)
$$

(3-28)

式(3-28)から式(3-25)の h 及び ξ は次のようになる。

$$
h = 3G + \frac{1}{n} \frac{\sigma}{\varepsilon^p} \\
\xi = \frac{(\theta - \Delta \theta) \cdot \dot{\varepsilon}^p \cdot \varepsilon^p}{m \sigma}
$$

(3-25)

なお、ひずみ速度依存性体の変形解析の精度と効率を左右する次に関するステップの大きさ Δt 及び式(3-17)の θ の大きさは内圧を受ける厚肉円管の解析を行い、そのときの時間ステップと解の収束性の関係から、安定な解が得られるそれぞれの大きさを決定した。

加工硬化指数 n は 0.0625 とし、ひずみ速度感度指数 m を 0.1、0.01、0.001 と変化させ、それぞれについて無次元化した端面変位速度 $\dot{u}/L\varepsilon_y$ を 1.0、1000 とした場合について、ブロックの変形解析を実施した。解析条件とそれに対する記号を表 3-1 に示す。以下、簡単化のために表 3-1 に示す記号 DS1〜FF3 を用いて説明する。

3.2.3 解析結果

荷重 F、くびれ量 v と端面変位 u の関係を図 3-3 に示す。ここで、荷重 F は $2W\sigma_y$、くびれ量 v は w、端面変位 u は L で各々無次元化した。また、$u/L=0.15$ のときの相当粘塑性ひずみ ε^p 分布と相当応力 σ 分布を図 3-4 に示す。

塑性理論の違いが現れているのはひずみ速度感度指数 m の小さい場合であり、DS3 と FS3 を比較すると、荷重-変位関係では最高荷重点を超えて変位が進んだ後に、J_2 流れ理論の場合(FS3)はだらかに荷重が下がっているのに対して、J_2 変形理論の場合作(S3)はある程度の変位量になってから急激に荷重が下がっている。相当粘塑性ひずみ分布でみると、J_2 流れ理論の場合(FS3)はくびれ部の変形はだらかなのかに対し、J_2 変形理論の場合(DS3)は約 45°方向にひずみが集中した部分があるのがわかる。このようにひずみが集中することにより、変形が局所化し、受け持つことができる荷重が下がったものと考えられる。3.2.2 に述べたように、ひずみ速度成分への寄与が、J_2 流れ理論は応力速度の降伏曲面の法線方向成分のみに対して、J_2 変形理論は応力速度の降伏曲面の接線方向成分も含まれており、この違いが変形の違いに表れたものである。
しかしながら、ひずみ速度感度指数 m が大きくなると塑性理論の違いの影響は小さくなってしまい、さらに変形速度が速くなると、塑性理論の違いの影響はほとんどなくなる。ひずみ速度感度(粘性)が大きくなると、式(3-26)に示すように相当応力が大きくなる。これは、図 3-4(b)の相当応力の分布図でもわかるように、例えば端面変位速度が同じ $FS1(m=0.1)$、$FS2(m=0.01)$ 及び $FS3(m=0.001)$ を比べると、m が大きくなるほど、同じ位置でも相当応力が高くなっていることがわかる。さらに端面変位速度が速くなると、例えば $FF1$ は $FS1$ より相当応力が高くなるのがわかる。この影響が最高荷重に表れており、端面変位速度が 1000 倍になると、荷重がほぼ 1000m 倍になっている。これは、図 3-4(a)の相当粘塑性ひずみ分布でわかるように、端面変位速度が速くなっても相当粘塑性ひずみ分布への影響は見られない。また、式(3-26)により相当粘塑性ひずみ分布が同じであれば相当応力は相当粘塑性ひずみ速度とひずみ速度感度指数に支配されるため、端面変位速度が α 倍になると相当粘塑性ひずみ速度も α 倍になり、相当応力は α^m 倍になったと考えられる。ここで、端面変位速度に対する相当粘塑性ひずみ分布の影響は見られず、変位量も同様であったので、図 3-2 には \dot{u}/\dot{L}_p が 1.0 の結果のみ示した。

塑性理論に対する影響については、上述のとおりひずみ速度感度指数が大きくなると相当応力が大きくなるため、式(3-5)の H_S が大きくなる方向となり、J_2 変形理論であっても式(3-4)の右辺第 2 項(応力速度の降伏曲面の接線方向成分)が小さくなる。そのため、J_2 流れ理論に近くなることから、ひずみ速度感度指数が大きくなると、塑性理論の違いの影響が小さくなったものと考えられる。

一方、最高荷重については塑性理論の違いによる影響は見られなかった。これは最高荷重までは変形はほぼ一様であり、図 3-1 に示す応力 σ'_f の方向と応力速度 $\dot{\sigma}'_f$ の方向に有意な差がなく、式(3-4)の右辺第 2 項(応力速度の降伏曲面の接線方向成分)の影響が表れなかったためと考えられる。

また、最高荷重の大きさは上述のとおり、ひずみ速度感度指数及び端面変位速度の影響を受け、端面変位速度が α 倍となると、最高荷重もおおよそ α^m 倍になった。

3.3 原子炉圧力容器設計・評価に用いる弾塑性解析

3.2 節で述べたブロックに引張りに対する弾塑性解析は、端面変位をコントロールしてブロックを引張った場合の弾塑性挙動をシミュレートしたものであり、このようなブロックに発生する応力は変位制御型応力である。一方、圧力容器に加わる内圧により発生する応力は荷重制御型応力である。図 3-2 の荷重変位関係において、荷重制御で解析をすれば、最高荷重を超えると、ブロックが受け持てる荷重はそれ以上上昇しないため、解析もそれ以上ができなくなる(解が発散し、収束しない)。圧力容器の一次応力評価に対しては最高荷重、つまり引張試験における引張強さまでが重要であり、それを超えると圧力容器はバーストすることになるので、最高荷重(引張強さ)以降の変形は実現
しない。3.2節で述べたように引張り荷重に対して最高荷重点まではJ_2流れ理論とJ_2変形理論による構成式の影響はほとんどない。市販のFEMコードでは一般的にJ_2流れ理論が用いられているが、圧力容器設計で使用する範囲では比較的変形は小さく、構成式の影響は小さいと考えられ、J_2流れ理論を用いて弾塑性解析することで問題ない。

本研究では地震に対する評価は対象外とし、JSME設計・建設規格で規定される設計条件、供用状態A、B、C及びD及び試験状態に対する荷重条件を対象にする。これらの荷重条件に対して生じる圧力・温度の変化によるひずみ速度は静的と考えてよい程度に遅く、ひずみ速度の影響も考慮する必要はないと考えられる。

本研究において用いる応力－ひずみ関係については、保守的に加工硬化を考慮せず、図3-5に示す弾完全塑性体を用いることとする。一次応力評価に対しては、設計条件はS_m、供用状態Cに対してはS_y、供用状態Dについては(2/3)S_yを降伏点とする弾完全塑性体を用いる。ここで、供用状態D、つまり運転状態IVは事故事例でありプラントが安全に停止すればよく、原子炉圧力容器に対してはバーストしないことが目標のため、バーストに至らない塑性変形は許容される。したがって、(2/3)S_yまでの塑性ひずみの発生は許容されるため、(2/3)S_yを降伏点とする弾完全塑性体を仮定した極限解析で評価することでよい。また、一次＋二次応力評価に対しては、応力の変動幅が3S_mとなるように、を1.5S_m降伏点とする弾完全塑性体を用いて弾塑性FEM解析を行えばよい。

微小変形有限要素法と大変形有限要素法の違いは、微小変形有限要素法は初期の形状に対して力の釣合いを考え、大変形有限要素法は変形後の形状に対して力の釣合いを考えることである。例えば、等分布荷重を受けける両端固定はより初期の形状に対して力の釣合いを考えると図3-6に示すように、微小変形有限要素法の場合は初期形状に対して力の釣合いを考えるので、固定端に最大モーメントが生じ、固定端で崩壊が生じる。一方、大変形有限要素法の場合は変形過程の各段階における変形形状に対して力の釣合いを考えるので、変形過程において固定はよりの表面に垂直な方向に常に荷重が生じる。これは、変形により曲率のある形状に対して、曲率の中心方向から等分布荷重が加わることとなり、極端な場合を考えると半径rの円弧状に変形したとすれば、その部分の断面には曲げ応力は生じず、引張応力が生じることとなる。このように、等分布荷重が生じる場合には大変形を考慮することで曲げ応力が緩和される効果があり、より大きな荷重を受け持つことができる。このような大きな荷重は容器に生じる内圧に対しては生じ得るものであり、保守的に考えれば微小変形有限要素法を用いればよい。したがって、微小変形有限要素法の方が保守的な評価になり、また原子炉圧力容器の設計においては最大荷重を超えるような大きな変形は認められないことから、保守的な微小変形有限要素法を用いることとする。
3.4 結言

弾塑性理論（J_2 流れ理論と J_2 変形理論）が平面ひずみブロックの変形の局所化に与える影響を調べ、圧力容器の弾塑性設計に用いる弾塑性解析について検討した。これらの検討結果は以下のとおりである。

(1) ひずみ速度感度指数が大きくなると J_2 変形理論の構成式においては応力速度の降伏曲面の接線方向への寄与の項が小さくなるため、J_2 流れ理論に近くなり、塑性理論の違いの結果に及ぼす影響は小さくなった。また、最高荷重点については、塑性理論の違いによる影響はほとんど見られなかった。これは最高荷重点までは変形はほぼ一様であり、応力速度の降伏曲面の接線方向成分の影響が現れないためと考えられる。

(2) 圧力容器の設計としては材料の応力-ひずみ関係は最高荷重点までを対象としており、圧力容器設計で使用する範囲では比較的変形が小さいため、構成式の影響は小さいと考えられる。したがって、J_2 流れ理論を用いている市販の FEM コードを使用することで問題はない。また、弾完全塑性体及び微小変形有限要素法を用いて弾塑性 FEM 解析をすることで、保守的な解が得られる。

(3) 圧力容器設計に用いる弾塑性解析においては、J_2 流れ理論を用い、弾完全塑性体を仮定し、微小変形有限要素法を用いて弾塑性 FEM 解析を行うこととする。

3.5 参考文献

[3-1] 冨田,進藤,朝田,後藤,「ひずみ速度依存性平面ひずみブロックの引張変形挙動の解析」, 日本機械学会論文集(A編), 54 巻 501 号(昭和 63-5), 論文 No.87-0726, p.1124.
図 3-1 降伏曲面に対する法線方向成分及び接線方向成分

図 3-2 両端面固着状態下で変形を受けるブロックの形状、座標と要素分割
図 3-3 荷重 F、くびれ量 v と端面変位 u の関係（矢印は最高荷重点）

図 3-4 相当粘塑性ひずみ分布と相当応力分布 ($u/L=0.15$)
設計条件用の弾完全塑性体
材料の応力-ひずみ曲線

供用状態 D 用の弾完全塑性体
供用状態 C 用の弾完全塑性体
試験状態用の弾完全塑性体
設計条件用の弾完全塑性体

図 3-5 材料の応力-ひずみ曲線と弾完全塑性体

(1) 微小変形の場合

(2) 大変形の場合

図 3-6 両端固定はりに対する微小変形と大変形の違い
表 3-1 解析条件と記号（n =0.0625）

<table>
<thead>
<tr>
<th>記号</th>
<th>塑性理論</th>
<th>無次元化端面変位速度 $\frac{\dot{u}}{L\dot{\varepsilon}}$</th>
<th>ひずみ速度感度指数 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS1</td>
<td>J_2変形理论</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>FS1</td>
<td>J_2流れ理論</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>DF1</td>
<td>J_2変形理論</td>
<td>1000</td>
<td>0.1</td>
</tr>
<tr>
<td>FF1</td>
<td>J_2流れ理論</td>
<td>1000</td>
<td>0.1</td>
</tr>
<tr>
<td>DS2</td>
<td>J_2変形理論</td>
<td>1.0</td>
<td>0.01</td>
</tr>
<tr>
<td>FS2</td>
<td>J_2流れ理論</td>
<td>1.0</td>
<td>0.01</td>
</tr>
<tr>
<td>DF2</td>
<td>J_2変形理論</td>
<td>1000</td>
<td>0.01</td>
</tr>
<tr>
<td>FF2</td>
<td>J_2流れ理論</td>
<td>1000</td>
<td>0.01</td>
</tr>
<tr>
<td>DS3</td>
<td>J_2変形理論</td>
<td>1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>FS3</td>
<td>J_2流れ理論</td>
<td>1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>DF3</td>
<td>J_2変形理論</td>
<td>1000</td>
<td>0.001</td>
</tr>
<tr>
<td>FF3</td>
<td>J_2流れ理論</td>
<td>1000</td>
<td>0.001</td>
</tr>
</tbody>
</table>
4. 原子炉圧力容器の古典的な設計手法とその課題

4.1 緒 言
従来の原子炉圧力容器に対する設計では、シェル理論に基づき、得られた応力(膜応力と曲げ応力)を発生原因により分類(応力分類)して、種々の評価を実施していた。

この考え方 2 次元軸対称体のシェル理論に基づき評価する場合は分かりやすい。しかし、弾性 FEM 解析による応力を対象にした場合、FEM 解析で得られる板厚内の応力分布は直線ではなく、特に 3 次元モデルに対しては複雑な分布になるため、単純にその分布に対して線形化処理した膜応力と曲げ応力を用いて評価すると過度に保守的になる場合がある。また、応力分類を行う評価ラインも FEM 解析モデルでは任意の断面が想定でき、その判断も設計者が行う必要があるため、シェル理論を用いた場合とは異なる判断が必要となる。

本章では、弹性 FEM 解析結果に従来の応力分類を用いる場合の課題を抽出する。そのために、FEM 解析に基づく一次応力評価に対して、皿型鏡モデルを対象に、応力分類により評価した場合と弾完全塑性体を仮定した弾塑性 FEM 解析(極限解析)により崩壊荷重を評価する場合について検討する。また、PWR 原子炉容器蓋用管台を例として、極限解析を用いて一次応力評価の応力分類の解釈を検討する。さらに、一次+二次応力評価及び疲労評価(簡易弾塑性解析)に対する FEM 解析結果の適用性についても検討する。

4.2 応力分類
ASME Sec.III [4-1]の NB-3000 及び JSME 設計・建設規格[4-2]の PVB-3000 に従い、クラス 1 容器に対して弾性 FEM 解析により応力評価を行うためには、板厚内の応力分布から図 4-1 に示すように膜応力と曲げ応力を計算する。このとき、膜応力 \(\sigma_m \) は、

\[
\sigma_m = \frac{1}{t} \int_{-t/2}^{t/2} \sigma(y) dy
\]

曲げ応力の等価直線成分 \(\sigma_b \) は、

\[
\sigma_b = \frac{6}{t^2} \int_{-t/2}^{t/2} \sigma(y) dy
\]

曲げ応力の非直線成分 \(\sigma_F \) は、

\[
\sigma_F = \sigma_0 - \sigma_m - \sigma_b
\]

と表すことができる。

さらに、荷重の種類や構造等を踏まえてこれらの応力を一次一般膜応力 \((P_a) \)、一次局膜応力 \((P_i) \)、一次曲げ応力 \((P_q) \)、二次応力 \((Q) \) 及びピーク応力 \((F) \) に分類する。具体的な応力分類の例を表 4-1 [4-2] に示す。表 4-1 に示すように、例えば内圧により発生する膜応力でも、構造や部位によっては \(P_m \) の場合もあれば \(P_L \) に分類される場合もある。曲げ応力の等価直線成分は一次応力の場合もあれば二次応力の場合もある。曲げ応力の非直線成分は
いずれもピーク応力に分類される。このように、容器の要素、位置、荷重の種類に応じて応力の分類は異なる。したがって、設計者は十分に注意して応力分類する必要がある。

応力分類して得られた各応力強さを許容値と比較する。2章で述べたように、一次応力評価は塑性崩壊、二次応力を評価するためシェイクダウンの考え方に基づいており、いずれも弾塑性挙動（弾完全塑性体）に基づき許容基準が構築されている。しかし、これらの評価法が開発された当時は、弾塑性FEM解析を設計に適用できるような環境条件は整っていなかった。また、応力解析を実施するに現状のようなFEM解析ではなく、もっともシェル理論が用いられていた。特に、圧力容器のような板厚や形状の不連続がある場合はシェル理論を組み合わせ、その接続されている境界において変位、力及びモーメントが等しくなるように解くという不静定解法を用いて応力を求めていた。したがって、応力解析により得られる応力は、基本的には膜応力と曲げ応力（等価直線成分）であり、応力集中があるような構造に対してはその構造に対する応力集中係数を文献等に基づき別途算出し、得られた膜、曲げ応力に対応する応力集中係数を乗じることで疲労評価に用いるピーク応力を求めていた。なお、不静定解析は現行のASME Sec.IIIのAppendix Aでも紹介されている。

ASME Sec.IIIのDesign by Analysisの評価方法は、このように求められる一次、二次及びピーク応力を弾塑性挙動に基づく許容基準と組み合わせることで評価手法が構築されている。単純な構造であれば上記の方法で適切に応力が求められるが、複雑な構造の場合は難しく、特に3次元構造の場合は不静定解法ではなく直接評価ができない。例えば円筒胴に付くノズルコーナ部の内圧によるピーク応力は、胴部の応力に係数を乗じて求められる手法を規格に取り込んでいる。しかし、それ以外の複雑な構造や3次元構造に対する応力評価できるような一般性は不静定解法には無く、何らかの仮定をおいて単純化したモデルにする必要があるが、それにより応力解析の精度は落ちる可能性がある。

近年はFEM解析が適用できるようになり、複雑な形状でもモデル化でき、応力が高精度に求められるようになった。当初はコンピュータの性能等の制限のため、FEM解析では2次元モデルで用いられていた。現在はコンピュータのハード面が飛躍的に向上し、3次元解析が可能となった。

FEM解析の場合、複雑な構造であっても板厚内の応力分布を精度よく求めることができる。得られた板厚内の応力分布を線形化処理すれば膜応力、曲げ応力及びピーク応力を算出することができるが、表面の構造不連続等の影響を受けた応力分布になるため、不静定解法で得られる膜応力及び曲げ応力とは単純には整合しない（図4-2）。特に3次元構造の場合、FEM解析は応力分布を精度よく求めることができるが、不静定解法の場合はなんらかの仮定をおいて2次元対称体にモデル化する必要があり、両者の応力解析の結果は必ずしも整合しない。ここで、複雑な3次元構造の一例として、図4-3に示す円筒胴につくノズルを考える。ノズル付け根部に着目すると、JSME設計・建設規格のPVB-3542.1の円筒胴に付くノズルの内圧に対する応力係数（胴部の応力に乗じることで
ノズルコーナ部に発生する応力を評価する係数は、長手断面の内側が3.1に対して、円周断面の内側は1.0とされる。また、管台表面R部は長手断面で1.2に対して、円周断面側は2.6とされている。これは、長手断面と円周断面では発生する応力が異なることを意味しており、ノズル取り付け部は全周が降伏することによる塑性破壊に 対して、FEM解析では任意に評価ラインが取れるため、単純に応力が高くなる評価ライ ンの膜、曲げ応力で評価するのは過度に保守的になる可能性がある。このように、ノズ ルコーナ部のような応力集中がある部位の膜、曲げ応力は応力集中の影響を受けた板厚 内の応力分布から得られるため、評価にあたっては注意が必要である。

以上のように、FEM解析を適用することで応力分布を精度よく求めることができ、単 純な線形化処理により膜応力及び曲げ応力を求め、評価することが可能である。しかし ながら、不静定解法に基づく従来の応力分類による評価方法とは必ずしも整合せず、ま たFEM解析結果に単純に評価ラインを設定して求めた膜、曲げ応力を評価に使用するこ とは過度に保守的になる場合がある。

以下では、一次応力評価及び二次応力評価におけるFEM解析結果に対する応力分類について検討した結果を示す。

4.3 一次応力評価に対するFEM解析の応力分類と極限解析

一次応力評価の原理となる考え方に基づけば、応力分類による一次応力評価の結果が 極限解析の結果と整合することになる。これについて、日本高圧力技術協会・FEM 応力評価委員会(TDF委員会)にて実施した皿型鏡板に対するラウンドロビン解析の結果 に基づき検討する。このラウンドロビン解析では弾性FEM解析結果に対する応力分 類と弾塑性FEM解析による崩壊解析を実施し、その結果を比較検討する。

4.3.1 解析モデル

皿型鏡モデルの形状及び物性値を図4-4及び表4-2に示す。皿型鏡は内圧を受ける圧 力容器であり、鏡部は皿型鏡、ナックル部及び円錐部からなる。材料はフェライト鋼 鍛造材のJIS SFVQ1Aとした。物性値は告示501号の300℃での値を用いた。

4.3.2 解析方法

弾性FEM解析、極限解析及び弾塑性FEM解析を行った。

弾性FEM解析では、最高使用圧力(Pd)を8.62MPaとして計算した。

極限解析では1.5Sm(276MPa)を降伏点とする弾完全塑性体を用いて弾塑性FEM解析 を行った。また、弾塑性FEM解析では弾性FEM解析による応力ひずみ関係を用いた。ここで、極限解析及び弾塑性FEM解析における崩壊圧力はASME Sec.III、NB-3213.254-1で規定されている二信勾配法を用いて求める。二信勾配法とは、崩壊荷
重を求めめる方法の一つで、図4-5に示す構造物の荷重−変位関係において、弾性域における荷重と変位関係の直線部が荷重軸に対してなす角度θに対し、\(\phi = \tan^{-1}(2\tan \theta) \)の傾きを有する直線が荷重−変位曲線と交わる点の荷重を許容荷重とする方法をいう。ただし、1.5\(S_m \)を降伏点とする極限解析に対しては、二倍勾配法で得られた荷重を1.5で割った荷重を設計条件に対する崩壊荷重とする。これは、設計条件に対する一次応力評価の許容値が設計応力強さ(\(S_m \))であることによる。

4.3.3 解析結果

16機関によりラウンドロビン解析が実施された。各機関で用いられたFEM解析プログラム、要素、節点数、要素数、板厚方向の分割、微小変形/大変形及び用いた応力ひずみ関係を表4-4に示す。

各機関の弾性FEM解析結果を表4-5に、各機関の解析結果の中から代表的な弾性FEM解析によるMises応力分布を図4-6に、板厚中心に沿った膜応力分布を図4-7に、内表面での膜+曲げ応力の分布を図4-8に示す。ここで、膜+曲げ応力はASME Sec.IIIにおける一次局部膜(\(P_L \))+二次応力(\(Q \))に相当する。また、表4-5には鏡と胴の端部の変位、内面側のMises応力の最大値とその位置及び板厚中心に沿って調べた膜応力強さと膜+曲げ応力(\(P_L + Q \))の最大値を示す。

弾塑性FEM解析の結果を表4-6に、崩壊解析の計算例を図4-9に、代表的な極限解析による崩壊時のMises応力分布を図4-10に、代表的な弾塑性FEM解析による崩壊時のMises応力分布を図4-11に示す。

4.3.4 考察

(1) \(P_m \)に基づく設計板厚

最初に、古典的な計算式で求まる板厚を検討する。本ベンチマークモデルを構成する円筒胴、皿型鏡と円錐部の最小板厚は弾性理論に基づき以下で与えられる。ここでは、ナックル部は胴部と鏡部との内圧による変位の差により発生する応力(二次応力)が支配的であり、胴部あるいは鏡部の板厚を確保しておけば一次応力に対しては問題ないと、板厚評価は割愛する。

円筒胴

\[
t = \frac{P_d \cdot R}{S_m - 0.6P_d} = 144.6 \text{mm}
\]

皿型鏡

\[
t = \frac{P_d \cdot L}{2S_m - 0.2P_d} = 105.9 \text{mm}
\]

円錐部
ここで、円錐部の角度 \(\theta \) は 60°であり、\(D_i \)は次式で得られる。

\[
D_i = 2 \left(R - r' \left(1 - \cos \theta \right) \right) = 5640 \text{mm}
\]

本ベンチマークモデルの板厚は全て一様に 225mm とした。したがって、円錐部が必要板厚を満足しないことになる。しかし、極限解析に対して二倍勾配法により求めた荷重は図 4-9 及び表 4-7 に示すように約 21MPa となった。設計条件に対する許容荷重はこの荷重に対して 1.5 倍にすることにより求まるので、約 14MPa となり、これは最高使用圧力 (8.62MPa) の約 1.6 倍である。ここで、円筒胴の式 (4-4) による最小板厚 (144.6mm) とベンチマークモデルの板厚 (225mm) の比は 1.56 であり、おおよそ整合した値となっている。これは、崩壊は円筒胴に発生する応力が支配していることを示唆している。また、このような複数の構造から成り立つ圧力容器においては板厚を一定にする必要はないと考えられる。

(2) FEM 解析モデルの違いによる影響

表 4-5 に示す弾性 FEM 解析結果による応力強さを比較したものを図 4-12 に、表 4-6 に示す極限解析及び弾塑性 FEM 解析結果による崩壊荷重を比較したものを図 4-13 に示す。これらの図表から、各機関では使用しているプログラム、要素のタイプ、メッシュサイズは異なるが、得られた弾性 FEM 解析、極限解析及び弾塑性 FEM 解析結果に大きな差はないことがわかる。

図 4-12 より、弾性 FEM 解析結果については最大膜応力強さは一部を除き、ほとんど差がない。FEM 解析ではモデルに加えられた外力 (この場合は内圧) と節点荷重の力のつり合いが保たれるため、断面上の節点荷重を面積で除した平均応力に相当する膜応力は要素の種類や要素分割によらず、基本的には差が出ない。ただし、各機関で評価した方法は、要素の積分点で得られた応力を節点に外挿して求めた応力を用いており、その外挿による若干の違いが結果に影響したと考えられる。

一方、最大膜応力強さと比べて \(P_L + Q \) は各機関で結果に若干の差が認められた。上述のとおり膜応力 \(P_L \) の差は小さいため、曲げ応力の違いが主因と考えられる。内圧により生じる曲げ応力は二次応力であり、上述の膜応力のように単純な外力とのつり合いだけでは決まらない。本モデルでは内圧による変位が胴部と鏡部で異なり、その変位差による変形がその曲げ応力の発生原因となる。曲げ応力は板厚内の応力分布に支配され、FEM 解析の場合、板厚内の応力分布は要素の種類や要素分割の影響を受けやすい。高次要素を採用したり、より細かな要素分割を採用すれば応力分布が精度よく得られるため、適切な要素と要素分割を採用すれば、得られる応力分布の差も小さくなる。比較的差のあった F(4 節点要素), I(3 節点シェル要素) 及び L(4 節点要素) 以外は、ほとんどが変位を 2 次式で表す 8 節点高次要素を用いた。これらの要素数及び節点数
も適切と考えられるレベルであったので、いずれの機関でも応力分布が比較的精度よく得られ、結果の差も小さかったものと考えられる。しかし、機関F、I及びLは低次要素を用いたため、得られた応力分布が若干精度の劣るものとなっていたと考えられる。しかしながら、値そのものについては大きな差ではなく、問題になるものではないと考えられる。

図4-13に示す崩壊荷重は図4-12の弾性FEM解析に比べると若干差が大きい。弾塑性FEM解析については要素やメッシュ分割の違いだけでなく、表4-3で設定した応力ひずみ関係の取り扱いが各プログラムで異なる（直接入力できるものあれば、二直線近似で設定する必要があるものもある）ところもあり、極限解析に比べると差が若干大きくなった。

大変形有限要素法と微小変形有限要素法の手法の違いによる影響については、要素以外は同じ条件であるD/1（微小変形要素）とD/2（大変形要素）を比べると、大変形有限要素法による解析結果の方が約5%崩壊荷重が高くなった。図4-7より、円筒胴部のナックル側の膜応力はナックル部の影響で低くなり、上にいくにつれて応力は上昇し、上端から約1000mm付近で最大値を示す。その位置からさらに上にいくにしたがって、膜応力は若干低下傾向を示している。極限解析による解析結果でもこの傾向は認められ、図4-10の極限解析による崩壊時のMises応力分布から、円筒胴部の上端の外側及びナックル部内側に弾性域が認められる（降伏点が276MPaなので、Contour Levelの6以内は弾性域）。上端から約1000mm付近が全断面降伏しており、崩壊はこの部分で発生していると考えられる。一方、その崩壊が発生している部分の下側（ナックル部側）の内面の弾性域は、図4-8の弾性FEM解析結果からもナックル部による曲げ応力の影響を受けており、円筒胴部下側のナックル部の曲げ応力の影響を受ける部分はそれによる変形のため、軸方向に曲率を持つこととなる。大変形有限要素法を用いた場合はその曲率のある状態に内圧が負荷されたとして力の釣り合いを考えて応力解析を行うため、その部分に発生する曲げ応力は低下する方向となる。ただし、それが崩壊荷重に与える影響は高々5%であり、極限解析及び弾塑性FEM解析を設計に適用することに対しては適切なFEM解析モデルを用いれば問題はないと考えられる。

(3) 弾性FEM解析、極限解析と弾塑性FEM解析結果の違い

皿型鏡部、ナックル部及び円筒胴部の弾性FEM解析による最大膜応力は、図4-7の分布からもわかるように円筒胴部が最も高い。一方、P\(_2\)+Q\(_2\)は図4-6の全体の相当応力分布及び図4-8の線形応力分布から、ナックル部で最も高い応力を生じている。これは円筒胴部と鏡部とでは内圧による変位に差があり、それにより発生する曲げ応力が影響しているものと考えられ、二次応力による影響と考えられる。

したがって、崩壊の観点では円筒胴部が支配的と考えられ、最高使用圧力8.62MPa
に対する円筒胴部の最大膜応力を表 4-5 の代表的な値として 125MPa とすると、その膜応力が降伏点(1.5Sm = 276MPa)に達するときの圧力 $P_{C\text{estimate}}$ は次式で計算される。

$$P_{C\text{estimate}} = 8.25 \times \frac{276}{125} = 19.0 \text{MPa}$$

次に、降伏点が $S_y(1.5Sm)$ の弾完全塑性体の円筒部が完全に塑性状態になったときの崩壊荷重 P_c は次式で計算できる。

$$P_c = \frac{2S_y}{\sqrt{3}} \ln \left(\frac{R + t}{R} \right) = 23 \text{MPa}$$

一方、表 4-6 では、極限解析による二倍勾配法による崩壊荷重は約 21MPa であり、二倍勾配法は真の崩壊荷重に比べて保守的になることを踏まえると、式(4-9)で得られた値より小さくなるのは妥当と考えられる。

ここで、複雑な形状に対して真の崩壊荷重を単純な式で表現するのは困難である。弾塑性 FEM 解析を用いた極限解析において、必要な崩壊荷重の精度に対して解析の収束を確認しながら荷重を増加させ、計算を行う（例えば、内圧に対して 0.01MPa の精度が必要であれば、0.01MPa の荷重増分を用いて最終的な荷重を求める）。このようにして求めた荷重が真の崩壊荷重の近似値に相当する。例えば、図 4-9 の極限解析では、FEM 解析の結果は計算を進めると二倍勾配法による崩壊荷重より荷重は上昇している。真の崩壊荷重点では構造は無制限に変形することになるが、二倍勾配法を適用する場合はその変位を制限された量にするため、二倍勾配法による崩壊荷重は真の崩壊荷重に比べて、保守的になる。

次に、ナックル部が崩壊に与える影響を調べるために、円筒胴部が弾性域にあるように降伏点を仮想的に高くしたモデルと、円筒胴部以外(鏡部)の降伏点を仮想的に高くしたモデルに対して解析を実施した。ここで、仮想的に想定する高い降伏点としては 2000MPa を用い、FEM 解析は FINAS で実施した。前者的解析モデルは円筒胴部が塑性崩壊せずに、鏡部が塑性崩壊するようにしたモデルであり、後者は鏡部が塑性崩壊せずに、円筒胴部が塑性崩壊するようにしたモデルである。両者の比較によりどちらの部分が塑性崩壊に対して支配的かを調べる。上記の 2 種類のモデルの解析結果と、参考に全部位を 1.5Sm とした極限解析の結果も合わせて図 4-14 及び図 4-15 に示す。

内圧を鏡頂部の軸方向変位で整理した結果、図 4-14 に示すように円筒胴部を弾性域としたモデル(円筒胴部の崩壊を防止したモデル)は全部位を 1.5Sm とした極限解析の結果を大きく超える高い圧力まで耐えうることがわかった。一方、鏡部を弾性域としたモデル(鏡部の崩壊を防止したモデル)の荷重値は、全部位を 1.5Sm とした極限解析の結果とはほぼ同等の結果が得られた。ただし、二倍勾配法では崩壊荷重が設定できなかった。

次に、内圧を円筒胴部の半径方向変位で整理した結果、図 4-15 に示すように円筒胴部を弾性域としたモデル(円筒胴部の崩壊を防止したモデル)はほぼ直線的な関係を示
し、二倍勾配法では崩壊荷重が設定できなかった。しかしながら、今回の解析の最大値は図 4-14 でも示したとおり全部位を 1.5Smとした極限解析の結果を大きく超えた。一方、鏡部を弾性域としたモデル(鏡部の崩壊を防止したモデル)は、全部位を 1.5Smとした極限解析の結果とほぼ同等の荷重－変位関係が得られた。
これらの結果から、本モデルは円筒胴部の崩壊が支配的であり、ナックル部の影響は小さいことが確認できた。また、二倍勾配法で崩壊荷重を設定する場合、その変位の着目点が影響することも確認できた。
以上の検討結果から、真の崩壊荷重と二倍勾配法による崩壊荷重との比率は各部位の構造や材料による影響を受け、例えば、二次応力が支配的な構造に対しては二倍勾配法による崩壊荷重が比較的低くても、真の崩壊荷重は比較的高い場合があり得る。また、二倍勾配法により崩壊荷重を設定するためにはその構造の崩壊の挙動を理解した上で変位着目点を設定する必要があるので、二倍勾配法は保守的であるが、その使い方には注意が要る。

4.3.5 FEM 解析に対する応力分類に基づく一次応力評価と極限解析
皿型鏡板の解析結果からもわかるように、内圧による弾性 FEM 解析結果には二次応力の性質を有する応力も含まれた応力分布が得られるため、比較的単純な皿型鏡板の場合でも弾性 FEM 解析結果を応力分類により評価した結果は極限解析により評価した結果より保守的となった。
応力分類による応力評価結果が許容値に対して厳しい場合でも設計が成立しないということではない。そのような場合は弾塑性 FEM 解析を用いた極限解析を用いて崩壊荷重を評価すれば、設計者は真の崩壊荷重と設計荷重との正確な裕度が把握でき、適切な設計を行うことが可能となる。また、これにより応力分類は不要となり、FEM 解析による結果から直接評価することが可能となる。
崩壊荷重を計算する方法としては二倍勾配法があり、真の崩壊荷重に対して保守的な結果が得られる。しかしながら、その評価に用いる変位の着目点については対応する構造の崩壊の様式を把握した上で適切に選ぶ必要がある。
ここで、複雑な構造に対して真の崩壊荷重を理論式で求めるのは困難であり、弾塑性 FEM 解析を行い、必要な崩壊荷重の精度に対して解の収束性に注意して計算を進めていき、荷重を増加させながら求めた値が真の崩壊荷重に対する近似値となる。この評価方法を用いれば精度の高い崩壊荷重が求められ、また評価着目点の選択も不要となる。これまでは、弾塑性 FEM 解析は計算機の計算速度や容量等で複雑な構造、特に 3 次元構造に対する適用は困難であった。しかし、最近は計算機も目覚しく発展し、設計段階でも比較的適用しやすくなったので、弾塑性 FEM 解析を用いた極限解析は、応力分類による評価方法に含まれる保守性を排除でき、また応力分類を行う必要もなくなるので、有効な方法と考えられる。
一方、別の使い方として、応力分類の解釈が難しい場合に、極限解析を用いることで適切な応力分類が可能である。その一例を次節において述べる。

4.4 PWR 原子炉容器蓋用管台の一次応力の応力分類への極限解析の利用

4.4.1 目的
内圧により発生する膜応力は基本的には一次応力であるが、複雑な構造の場合、弾性 FEM 解析で得られた応力分布に対して線形化処理により求めた膜応力には二次応力の性質を有する場合がある。そのような膜応力を用いて一次応力評価をするのは保守的であるが、技術的には必ずしも適切ではない。そのような場合に極限解析を用いてその応力分類の解釈を検討することが考えられる。その例として、PWR 原子炉容器蓋用管台の一次応力について検討する。

原子炉容器の蓋用管台は、図 4-16 に示すように溶接により上鏡に取り付けられている。内圧が加わると上鏡の膨張により上鏡の穴径は大きくなる。一方、蓋用管台は上鏡に比べて板厚に対する径の比が小さく、相対的に厚肉なため、同じ圧力が加わっても内圧より蓋用管台の径の増加量は上鏡の穴径の増加より小さい。従って、蓋用管台は溶接部を介して上鏡から引張られ、蓋用管台の溶接部近傍はそれにより局所的な応力生じることとなる。

このような局所的な応力は、ASME Sec.III の応力分類上は、一次局部膜応力(P_L)または二次応力(Q)となるが、保守側に P_L とするとその許容応力は 1.5S_e となる。一方、二次応力とすれば、蓋用管台の内圧に対する一次応力の膜応力は P_m のみを対象として評価することが可能である。この応力分類の取扱いの妥当性を極限解析を用いて明確にする。

具体的には、蓋用管台を単純な管形状として設計圧力に対して求められた板厚として、上鏡も含めて崩壊荷重を極限解析を用いて評価する。その結果に基づき、内圧による局部応力の応力分類について考察する。

4.4.2 解析方法
（1）必要板厚の設定
薄肉円筒に内圧 P が作用した場合の応力は、以下の式で表される。

\[
\sigma_x = \frac{P R}{2 t} = \frac{P (D_o - t)}{4 t}, \quad \sigma_\theta = \frac{P R}{t} = \frac{P (D_o - t/2)}{t}, \quad \sigma_r = \frac{P}{2}
\]

ここで、\(D_o\)は外径、\(R\)は内半径、\(t\)は板厚、\(x\)は円筒の軸方向、\(\theta\)は周方向、\(r\)は半径方向を示す。

一次一般膜応力 \(P_m\)は式(4-10)から、以下の通り表される。

\[
P_m = \max \{\sigma_x - \sigma_\theta, \sigma_\theta - \sigma_r, \sigma_r - \sigma_x\} = \frac{P (D_o - t/2)}{t} + \frac{P}{2}
\]
よって、必要板厚は、P_mが許容値（設計応力強さ $S_m=137$ MPa）と等しいと置き、
Pは最高使用圧力 17.16 MPa、D_oは外径 101.6 mm とし、板厚について整理すると
以下のように求められる。

$$t = \frac{PD_o}{2S_m + P} = \frac{17.16 \times 101.6}{2 \times 137 + 17.16} = 6.0 \text{ mm} \quad \cdots (4-12)$$

したがって、蓋用管台の板厚を 6.0 mm とする。

(2) 評価方法

蓋用管台の板厚を一次一般膜応力評価で限界となる 6.0 mm、降伏点を S_m とする極限解析を行い、二倍勾配法により崩壊荷重（許容圧力 P_{allow}）を算出する。ここで、JSME 設計・建設規格の極限解析では降伏点を 1.5S_m とする極限解析を行い、二倍勾配法で得られた荷重を 1.5 で除した値を崩壊荷重としているが、後述するように単調負荷で計算する場合は降伏点を S_m とする極限解析による崩壊荷重と同じ値になるので、ここでは降伏点を S_m とする極限解析を行うものとする。

(3) モデル化範囲

上鏡穴の配列を考慮し、対称性から図 4-17 の破線で示す範囲で図 4-18 に示すように 2 次元軸対称体にモデル化する。蓋用管台の板厚は 6.0 mm とする。

(4) 解析モデル

評価に用いた FEM メッシュを図 4-19 に示す。解析プログラムは ABAQUS を使用し、図 4-19 に示す評価点 1 ～ 9 に着目して評価を実施した。

4.4.3 評価結果

上記に基づき、弾塑性 FEM 解析（極限解析）を実施し、二倍勾配法により崩壊荷重を求めた。評価結果を表 4-7 に示す。

表 4-7 より、二倍勾配法による許容圧力(崩壊荷重)は評価点 3 における 19.57MPa が最小値となった。また、圧力の増分 0.01MPa に対して得られた最大の圧力は 19.87MPa であり、真の崩壊荷重の近似値としては 19.87MPa とすることが可能である。

支配的となった蓋用管台内面の評価点 3 及び管台頂部の評価点 5 の圧力－変位関係を図 4-20 に示す。図 4-20 より、ある圧力レベルに近ければ変位量は急激に増加し、崩壊に至っている。また、二倍勾配法により求められた崩壊荷重については両評価点で若干の差はあるものの、崩壊の視点では溶接部近傍と一般部の挙動は同等であると判断される。

次に、相当応力分布を図 4-21 に、相当塑性ひずみ分布を図 4-22 に示す。ここで、圧力は 5MPa, 10MPa, 15MPa 及び崩壊荷重点近傍の 19MPa で整理した。図 4-21 よ
り、蓋用管台は溶接部上部で応力が高く、圧力が高くなるに従って、蓋用管台の上方に応力が高い部分が増加していくことが分かる。圧力 15MPa では蓋用管台の溶接部上部付近で降伏点を超え塑性ひずみを生じているが、図 4-20 の圧力 - 変位関係からはこの圧力では崩壊は生じていない。したがって、この部分で発生している塑性ひずみは二次応力によるものと考えられる。圧力 19MPa では溶接部より上側の蓋用管台で、ほぼ全面的に降伏点を超え、崩壊が進もうとしている傾向が見られる。相当塑性ひずみも同様の傾向を示し、図 4-22 より、溶接部上部の盖用管台で塑性ひずみが進行していく様子が認められる。

上鏡が内圧により変形し、溶接部を介して蓋用管台が径方向に引張られるため、蓋用管台の溶接部上部に比較的高い応力が発生した。管台の崩壊は、この局所的な応力の影響ではなく、内圧により蓋用管台一般部が崩壊するときの応力で支配されると考えられる。以上より、許容圧力は 19.5MPa となり、最高使用圧力 17.16MPa よりも高くなった。

この差は、板厚は Tresca 応力にもとづいて設定したが、極限解析は Mises 応力に基づく流れ理論を用いたためと考えられる。弾完全塑性体の円筒が完全に塑性状態になったときのミーゼス応力に基づく崩壊荷重 P_c は次式で計算できる

$$P_c = \frac{2S_m}{\sqrt{3}} \ln \left(\frac{R + t}{R} \right) $$ (4-13)

上式で S_m を $S_m(=137MPa)$ として図 4-18 の蓋用管台の寸法に基づいて崩壊圧力 P_c を求めるとき、19.88MPa となり、極限解析による真の崩壊荷重の近似値の 19.87MPa とほぼ同じ値となった。なお、図 4-19 のモデルに対して、蓋用管台の最高使用圧力に対する弾性 FEM 解析による膜応力強さは 246 MPa であり、P_L の許容値である 1.5S_m(205 MPa) を超えることとなるが、上述のとおり、最高使用圧力に対して、当該モデルの健全性は確保され、この局部膜応力は P_L を超えないと判断される。

4.5 二次応力に対する FEM 解析の応力分類と熱応力ラチェット

一次 + 二次応力評価は、2 章で述べたように一次 + 二次応力の応力変動幅が $3S_m$ 以下のときはシェイクダウンして弾性域にあると判断し、疲労評価では弾性解析で得られた応力を用いて評価する。一方、その応力変動幅が $3S_m$ を超えるときは塑性域にあると判断し、疲労評価においては弾性解析で得られた応力に Ke係数を乗じることで簡易的に弾塑性計算をして、疲労評価を実施する。つまり、一次 + 二次応力評価は基本的には疲労評価で用いる応力に、彈性解析による応力を直接用いてよいのか、弾塑性の影響を考慮する必要があるのかの判断に使われる。

弾塑性の影響を考慮する必要がある場合に Ke係数を用いるが、Ke係数を用いる応力に対する条件として、熱曲げを除く一次 + 二次応力が $3S_m$ 以下という規定がある。熱曲げを
除く一次＋二次応力が3Smをこえるということは、板厚全体が塑性域になることを意味しており、後述する弾性追従によりKe係数が増大することになる。この規定はそれを防ぐことになるものであり、現行のASME Sec.IIIのKe評価式及びJSEM設計・建設規格のKe評価式を使用するための前提になるものである。

ここで、上記の一次＋二次応力評価の考え方は、基本的には軸対称体に対する考え方に基づいている。3次元構造に対して、例えば構造不連続のような応力が高いところに評価ラインを設定して応力分類すると、構造不連続によるピーク応力に分類されるべき応力も含まれた膜＋曲げ応力を用いて一次＋二次応力評価をすることになり、過度に保守的な評価になる場合がある。3次元FEM解析により適切な応力分布が求められたとしても、従来の線形化処理では次元的な構造不連続によるピーク応力を取除くことはできないため、応力分類が不要な方法が必要となる。

また、熱応力を除く一次＋二次応力の規定は進行性の変形(熱応力ラチェット)を防止する一つの条件にもなる。熱応力ラチェット評価については、ASME Sec.III及びJSME設計・建設規格とも、2章に述べたMillerによる評価方法[4-7]が導入されている。このMillerの評価方法は単軸の単純な構造に対する応力分布を仮定したものであり、必ずしも3次元構造の複雑な応力分布を想定したものではない。ASME Sec.III, NB-3222.5 "Thermal Stress Ratchet"では評価の対象を"an axisymmetric shell"(軸対称シェル)とされているが、3次元構造でも構造不連続部のように局所的な応力が発生する部分に熱応力ラチェットが生じる可能性はある。

以上より、一次＋二次応力評価は当該部の挙動が弾性域にあるかどうか(塑性域にあれば疲労評価でKe係数を考慮)と熱応力ラチェットの発生を防止することを目的としており、現行の応力分類による評価方法及びMillerの評価手法は3次元形状の複雑な構造に対して必ずしも適切に評価できるとはいえないと考えられる。

一方、1.5Smを降伏点とする弾完全塑性体を用いた繰返しの弾塑性FEM解析を実施して、その挙動を調べれば、熱応力ラチェット評価が可能である。したがって、このような場合にも弾塑性FEM解析は有効であり、一次＋二次応力評価及び熱応力ラチェット評価の原理として考え方ていた弾塑性挙動に対する評価を弾塑性FEM解析で評価すればよい。ただし、評価の対象となる設計過渡条件の数は多く、全てに対して弾塑性FEM解析を実施するのは非効率的であるため、弾性FEM解析によりスクリーニングする基準を設け、それを超える場合に弾塑性FEM解析により詳細評価を実施する方法が必要と考えられる。

4.6 疲労評価及び簡易弾塑性解析（Ke係数）

疲労評価に用いるKe係数は、Langer[4-8]による片持ち梁の曲げや図4-23に示すテーパーを有する板の引張りモデルの塑性ひずみ集中の検討に基づき開発した評価式をASME Sec.IIIでは採用した。しかし、その評価式は保守的であることが知られており、
JSME 設計・建設規格では、後述する(社)火力原子力協会「簡易弾塑性解析用応力割り増し係数検討会(Ke 検討会)」で開発された Ke 評価式\(^{4.9,10}\)を採用した。ここで、上記の評価式はいずれも応力分類に基づく一次＋二次応力を用いるものとなっている。

弾性 FEM 解析で応力分類をせずに評価するためには、表面の応力に直接乗じることができる Ke 係数の評価式を用いるか、弾塑性 FEM 解析により表面の応力に乗じる Ke 係数を直接求めなければならない。なお、直接 Ke 係数を計算する場合は熱応力ラチェット評価で弾塑性 FEM 解析を実施しているので、その解析結果を流用することが可能である。

4.7 結 言

弾性 FEM 解析結果に従来の応力分類を用いる場合の課題を抽出した。そのため、弾性 FEM 解析に基づく一次応力評価に対して、皿型鏡板を対象に応力分類により評価した場合と弾塑性 FEM 解析を用いた応力評価により崩壊荷重を評価する場合について検討した。また、PWR 原子炉容器蓋用管台を例として、極限解析を用いて一次応力評価の応力分類の解釈を検討した。さらに、一次+二次応力評価及び疲労評価(簡易弾塑性解析)に対する FEM 解析結果の適用性についても検討した。これらの検討結果は以下のとおりである。

(1) 弾性 FEM 解析結果に応力分類を用いる場合、FEM 解析を適用することで精度の高い応力分布が得られ、単純な線形化処理により膜応力及び曲げ応力を求め、応力分類することが可能である。しかし、それは不静定解法に基づく従来の応力分類による評価方法とは必ずしも整合しないところがある。

(2) 一次応力評価について、皿型鏡板を対象に応力分類による評価と極限解析を用いた評価を実施した。弾性 FEM 解析結果を応力分類により評価すると、ナックル部周りに発生する応力に二次応力が含まれるため、単純に評価すると保守的な評価になることがわかった。それに対して、極限解析により評価することで妥当な結果が得られることがわかった。そこで、極限解析による崩壊荷重としては、二倍勾配法により求める方法と解析的な真の崩壊荷重の二つの方法が考えられる。二倍勾配法は保守的であるが、評価点により崩壊荷重が異なる場合があるので、使い方は注意が必要である。解析的な真の崩壊荷重の方がそのようなことはなく、複雑な構造を評価するにはより適切と考えられる。

(3) 応力分類の解釈が難しい場合に極限解析を用いて評価することで適切な応力分類の解釈ができる場合があり、PWR 原子炉容器蓋用管台における結果、構造不連続部の応力は \(P_L \) とする必要はなく、二次応力に分類してもよいことがわかった。

(4) 一次+二次応力評価は、当該部の挙動が弾性域にあるかどうかを判断すること(塑性域にあるならば疲労評価で Ke 係数を考慮)及び熱応力ラチェットを防止することが目的
と考えられる。現行の応力分類による評価方法及びMillerの評価手法では3次元形状の複雑な構造に対しては必ずしも適切に評価できるとはいえず、応力分類を行わずに弾塑性FEM解析により構造物を直接評価する方法が有効である。さらに、疲労評価においても、弾塑性FEM解析により直接Ke係数を計算する方法が有効である。

(5)圧力容器設計に対して、応力分類を行わず、弾塑性FEM解析を活用した設計手法を開発することが必要であり、次章以降に具体的に検討する。

4.8 参考文献
[4-6] 「弾塑性解析活用設計基準検討会(EPD基準検討会: Committee on Elastic-Plastic Analysis Design Guideline)成果報告書」(社)火力原子力発電技術協会, 2003年(平成15年)10月
図4-1 膜応力と曲げ応力（応力分類）

不静定解法

FEM解析

図4-2 不静定解法とFEM解析に対する応力分類

図4-3 3次元構造の例
図 4-4 皿型鏡板モデルの形状
（物性値は表 4-2 参照）

図 4-5 二倍勾配法

図 4-6 弾性 FEM 解析のMises 応力分布例

図 4-7 板厚中心に沿った膜応力分布の例
（弾性 FEM 解析）

図 4-8 板厚内表面に沿った膜+曲げ応力
分布の例（弾性 FEM 解析）
図 4-9 極限解析・弾塑性 FEM 解析による二倍勾配法による崩壊荷重計算の例

図 4-10 極限解析による崩壊時の Mises 応力分布の例
図 4-11 弾塑性 FEM 解析による崩壊時の Mises 応力分布の例
図 4-12 各機関の弾性 FEM 解析で得られた応力強さの比較

図 4-13 各機関の極限解析及び弾塑性 FEM 解析で得られた崩壊荷重の比較
図4-14 崩壊荷重の比較（変位着目点：鏡頂部軸方向）

図4-15 崩壊荷重の比較（変位着目点：円筒胴端部半径方向）
図4-16 蓋用管台の内圧による変位
（模式図）

図4-17 上鏡側モデル化範囲

図4-18 蓋用管台解析モデル
インコネル継手部
（インコネル 600 合金）

インコネルバタリング部
（インコネル 600 合金）

① ② ③ ④

蓋用管台
（SA533B Cl.1）

図 4-19 FEM メッシュ及び評価点
図4-20 壓力－変位関係
図4-21 相当応力分布

図4-22 相当塑性ひずみ分布
図 4·23 テーパーを有する平板の引張り
表 4-1 応力分類の例

<table>
<thead>
<tr>
<th>容器の要素</th>
<th>位置</th>
<th>荷重の種類</th>
<th>応力の分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>円筒胴、上鏡または下鏡</td>
<td>不連続部から離れた部分</td>
<td>内圧</td>
<td>膜応力（板厚平均応力）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>曲げ応力（板厚方向勾配成分）</td>
</tr>
<tr>
<td></td>
<td>熱</td>
<td>膜応力+曲げ応力の等価直線成分</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>曲げ応力の非直線成分</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>外荷重</td>
<td>膜応力+曲げ応力</td>
<td>P_m</td>
</tr>
<tr>
<td>上鏡または下鏡リガメント</td>
<td>内圧</td>
<td>最小リガメント幅および板厚方向の平均応力</td>
<td>P_m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最小リガメント幅方向の平均応力</td>
<td>P_L</td>
</tr>
<tr>
<td></td>
<td></td>
<td>応力集中による応力増加分</td>
<td>または P_b</td>
</tr>
<tr>
<td></td>
<td>熱</td>
<td>最小リガメント幅方向の平均応力</td>
<td>Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>表面でのピーク熱応力（曲げ応力の非直線成分）</td>
<td>F</td>
</tr>
<tr>
<td>さら形鏡板</td>
<td>球殻の頂部</td>
<td>内圧</td>
<td>膜応力</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>曲げ応力</td>
</tr>
<tr>
<td>円すい胴、ナックル部または円筒胴との接合部</td>
<td>内圧</td>
<td>膜応力</td>
<td>P_L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>曲げ応力</td>
</tr>
</tbody>
</table>
表 4-2 皿型鏡板モデルの寸法と材料特性

<table>
<thead>
<tr>
<th>項目</th>
<th>寸法と材料特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>肉の内半径</td>
<td>$R = 3000 \text{ mm}$</td>
</tr>
<tr>
<td>肉の長さ</td>
<td>$l_s = 3000 \text{ mm}$</td>
</tr>
<tr>
<td>皿型鏡の内半径</td>
<td>$L = 4500 \text{ mm}$</td>
</tr>
<tr>
<td>ナックル部の内半径</td>
<td>$r' = 360 \text{ mm}$</td>
</tr>
<tr>
<td>円錐部の長さ</td>
<td>$t = 225 \text{ mm}$</td>
</tr>
<tr>
<td>ヤング率</td>
<td>$E = 1.75 \times 10^5 \text{ MPa}$</td>
</tr>
<tr>
<td>ポアソン比</td>
<td>$\nu = 0.3$</td>
</tr>
<tr>
<td>最高使用圧力</td>
<td>$P_u = 8.62\text{ MPa}$</td>
</tr>
<tr>
<td>設計応力強さ</td>
<td>$S_m = 184 \text{ MPa}$</td>
</tr>
</tbody>
</table>

表 4-3 SFVQ1A 材の引張試験データ

<table>
<thead>
<tr>
<th>全ひずみ (％)</th>
<th>応力 (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>370.00</td>
</tr>
<tr>
<td>0.5</td>
<td>404.25</td>
</tr>
<tr>
<td>1.0</td>
<td>433.66</td>
</tr>
<tr>
<td>2.0</td>
<td>487.55</td>
</tr>
<tr>
<td>3.0</td>
<td>521.85</td>
</tr>
<tr>
<td>4.0</td>
<td>539.00</td>
</tr>
<tr>
<td>5.0</td>
<td>553.70</td>
</tr>
<tr>
<td>6.0</td>
<td>563.50</td>
</tr>
</tbody>
</table>

表 4-4 各機関における解析条件

<table>
<thead>
<tr>
<th>機関</th>
<th>プログラム</th>
<th>要素の種類</th>
<th>筆点</th>
<th>要素数</th>
<th>板厚方向分割</th>
<th>変形要素</th>
<th>応力ひずみ</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MARC</td>
<td>8節点高次要素</td>
<td>569</td>
<td>160</td>
<td>4</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>MARC</td>
<td>8節点高次要素</td>
<td>725</td>
<td>210</td>
<td>5</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>ABAQUS</td>
<td>4節点積分低減要素</td>
<td>628</td>
<td>405</td>
<td>5</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>D/1</td>
<td>FINAS</td>
<td>8節点高次要素</td>
<td>579</td>
<td>156</td>
<td>3</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>D/2</td>
<td>FINAS</td>
<td>8節点高次要素</td>
<td>579</td>
<td>156</td>
<td>3</td>
<td>大変形</td>
<td>真</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>ADINA</td>
<td>8節点高次要素</td>
<td>1388</td>
<td>405</td>
<td>5</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>STAX</td>
<td>4節点 3 角形結合要素</td>
<td>343</td>
<td>288</td>
<td>6</td>
<td>微小変形</td>
<td>公称</td>
<td>剛性変位法</td>
</tr>
<tr>
<td>G/1</td>
<td>Applied Structure</td>
<td>適合要素</td>
<td>定義なし</td>
<td>4</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>縮性 FEM 解析のみ</td>
</tr>
<tr>
<td>G/2</td>
<td>MARC</td>
<td>4節点低次要素</td>
<td>693</td>
<td>608</td>
<td>8</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>H/1</td>
<td>EPIC-IV</td>
<td>3節点低ひずみ要素</td>
<td>1164</td>
<td>2136</td>
<td>6</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>H/2</td>
<td>PC-FEAP</td>
<td>4節点低次要素</td>
<td>315</td>
<td>248</td>
<td>4</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>ABAQUS</td>
<td>3節点シェル要素</td>
<td>43</td>
<td>21</td>
<td>11*</td>
<td>大変形</td>
<td>真</td>
<td>* 積分点</td>
</tr>
<tr>
<td>J</td>
<td>MARC</td>
<td>8節点高次要素</td>
<td>681</td>
<td>192</td>
<td>4</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>ABAQUS</td>
<td>8節点高次要素</td>
<td>849</td>
<td>240</td>
<td>4</td>
<td>大変形</td>
<td>真</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>ABAQUS</td>
<td>4節点低次要素</td>
<td>492</td>
<td>405</td>
<td>5</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>FINAS</td>
<td>8節点高次要素</td>
<td>350</td>
<td>96</td>
<td>4</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>ABAQUS</td>
<td>8節点高次要素</td>
<td>2435</td>
<td>744</td>
<td>8</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>ANSYS</td>
<td>4節点低次要素</td>
<td>492</td>
<td>405</td>
<td>5</td>
<td>大変形</td>
<td>真</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>FINAS</td>
<td>4節点低次要素</td>
<td>310</td>
<td>244</td>
<td>4</td>
<td>微小変形</td>
<td>公称</td>
<td></td>
</tr>
<tr>
<td>機関</td>
<td>プログラム</td>
<td>端部変位 (mm)</td>
<td>Mises 応力</td>
<td>最大膜応力強さ</td>
<td>最大 P_{L+Q}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>鏡</td>
<td>胴</td>
<td>鏡</td>
<td>ナックル</td>
<td>胴</td>
<td>ナックル</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>MARC</td>
<td>5.14</td>
<td>1.84</td>
<td>325.6</td>
<td>193.9</td>
<td>125.0</td>
<td>104.1</td>
<td>96.7</td>
</tr>
<tr>
<td>B</td>
<td>MARC</td>
<td>5.15</td>
<td>1.84</td>
<td>326.2</td>
<td>211.8</td>
<td>120.9</td>
<td>131.1</td>
<td>97.2</td>
</tr>
<tr>
<td>C</td>
<td>ABAQUS</td>
<td>5.17</td>
<td>1.85</td>
<td>325.0</td>
<td>180.0</td>
<td>126.0</td>
<td>98.9</td>
<td>97.7</td>
</tr>
<tr>
<td>D/1</td>
<td>FINAS</td>
<td>5.14</td>
<td>1.84</td>
<td>321.1</td>
<td>216.4</td>
<td>125.3</td>
<td>104.9</td>
<td>97.0</td>
</tr>
<tr>
<td>E</td>
<td>ADINA</td>
<td>5.14</td>
<td>1.84</td>
<td>325.4</td>
<td>226.2</td>
<td>125.2</td>
<td>104.3</td>
<td>97.0</td>
</tr>
<tr>
<td>F</td>
<td>STAX</td>
<td>5.17</td>
<td>1.88</td>
<td>306.6</td>
<td>213.9</td>
<td>124.4</td>
<td>100.5</td>
<td>99.9</td>
</tr>
<tr>
<td>G/1</td>
<td>Applied Structure</td>
<td>5.05</td>
<td>1.75</td>
<td>303.2</td>
<td>210.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H/1</td>
<td>EPIC-IV</td>
<td>5.14</td>
<td>1.81</td>
<td>318.3</td>
<td>222.7</td>
<td>124.8</td>
<td>103.0</td>
<td>97.6</td>
</tr>
<tr>
<td>H/2</td>
<td>PC-FEAP</td>
<td>5.11</td>
<td>1.84</td>
<td>276.1</td>
<td>247.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>I</td>
<td>ABAQUS</td>
<td>5.25</td>
<td>—</td>
<td>—</td>
<td>125.1</td>
<td>108.3</td>
<td>97.0</td>
<td>284.6</td>
</tr>
<tr>
<td>J</td>
<td>MARC</td>
<td>5.14</td>
<td>1.84</td>
<td>303.7</td>
<td>214.9</td>
<td>123.2</td>
<td>105.1</td>
<td>97.1</td>
</tr>
<tr>
<td>K</td>
<td>ABAQUS</td>
<td>5.14</td>
<td>1.84</td>
<td>325.2</td>
<td>197.8</td>
<td>125.2</td>
<td>103.4</td>
<td>97.0</td>
</tr>
<tr>
<td>L</td>
<td>ABAQUS</td>
<td>5.18</td>
<td>1.84</td>
<td>297.2</td>
<td>226.2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>FINAS</td>
<td>5.14</td>
<td>1.84</td>
<td>324.1</td>
<td>186.1</td>
<td>124.7</td>
<td>105.2</td>
<td>97.3</td>
</tr>
<tr>
<td>N</td>
<td>ABAQUS</td>
<td>5.15</td>
<td>1.84</td>
<td>308.5</td>
<td>210.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O</td>
<td>ABAQUS</td>
<td>5.16</td>
<td>1.84</td>
<td>315.0</td>
<td>194.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P</td>
<td>FINAS</td>
<td>5.16</td>
<td>1.84</td>
<td>265.0</td>
<td>245.1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

(*) ナックル部鏡側端部からの距離

表 4-6 各機関における極限解析結果及び弾塑性 FEM 解析結果（二倍勾配法）

<table>
<thead>
<tr>
<th>機関</th>
<th>プログラム</th>
<th>変形要素</th>
<th>極限解析による崩壊荷重</th>
<th>弾塑性解析による崩壊荷重</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>内圧 (MPa)</td>
<td>位置(*) (mm)</td>
</tr>
<tr>
<td>A</td>
<td>MARC</td>
<td>微小変形</td>
<td>20.8</td>
<td>24.8</td>
</tr>
<tr>
<td>B</td>
<td>MARC</td>
<td>微小変形</td>
<td>21.0</td>
<td>26.0</td>
</tr>
<tr>
<td>C</td>
<td>ABAQUS</td>
<td>微小変形</td>
<td>21.4</td>
<td>24.2</td>
</tr>
<tr>
<td>D/1</td>
<td>FINAS</td>
<td>微小変形</td>
<td>21.0</td>
<td>25.0</td>
</tr>
<tr>
<td>D/2</td>
<td>FINAS</td>
<td>大変形</td>
<td>22.0</td>
<td>26.3</td>
</tr>
<tr>
<td>E</td>
<td>ADINA</td>
<td>微小変形</td>
<td>20.6</td>
<td>25.0</td>
</tr>
<tr>
<td>F</td>
<td>STAX</td>
<td>微小変形</td>
<td>21.9</td>
<td>26.3</td>
</tr>
<tr>
<td>G/1</td>
<td>MARC</td>
<td>微小変形</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H/1</td>
<td>EPIC-IV</td>
<td>微小変形</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H/2</td>
<td>PC-FEAP</td>
<td>微小変形</td>
<td>21.0</td>
<td>25.3</td>
</tr>
<tr>
<td>I</td>
<td>ABAQUS</td>
<td>大変形</td>
<td>20.2</td>
<td>24.7</td>
</tr>
<tr>
<td>J</td>
<td>MARC</td>
<td>微小変形</td>
<td>21.0</td>
<td>25.3</td>
</tr>
<tr>
<td>K</td>
<td>ABAQUS</td>
<td>大変形</td>
<td>22.0</td>
<td>26.0</td>
</tr>
<tr>
<td>L</td>
<td>ABAQUS</td>
<td>微小変形</td>
<td>21.0</td>
<td>25.0</td>
</tr>
<tr>
<td>M</td>
<td>FINAS</td>
<td>微小変形</td>
<td>21.0</td>
<td>24.6</td>
</tr>
<tr>
<td>N</td>
<td>ABAQUS</td>
<td>微小変形</td>
<td>21.5</td>
<td>25.6</td>
</tr>
<tr>
<td>O</td>
<td>ANSYS</td>
<td>大変形</td>
<td>21.4</td>
<td>25.5</td>
</tr>
<tr>
<td>P</td>
<td>FINAS</td>
<td>微小変形</td>
<td>22.9</td>
<td>27.3</td>
</tr>
</tbody>
</table>

(*) 鏡頂部の変位
表 4-7 各評価点の二倍勾配法による崩壊荷重

<table>
<thead>
<tr>
<th>評価点</th>
<th>崩壊圧力 [許容圧力] (MPa)</th>
<th>崩壊圧力点変位 (mm)</th>
<th>最高使用圧力 (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>溶接部近傍</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>19.87以上*2)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19.82</td>
<td>0.102</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>19.57</td>
<td>0.075</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19.71</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td>管台頂部</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19.87以上*2)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>上鏡側</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19.87以上*2)</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

(1) 評価点は図 4-19 参照。
(2) 「以上」となっているのは、その荷重までに二倍勾配と交差しなかったことを示す。また、解析は圧力の増分 0.01MPa に対して得られた最大の圧力が 19.87MPa であり、真の崩壊荷重は近似値として 19.87MPa とすることができる。
5. 一次荷重に対する設計手法

5.1 緒 言

4.3 節での検討結果から、二次応力の性質を有する応力が含まれた弾性 FEM 解析による応力分布に対して単純に線形化処理を行って一次応力評価をした場合、保守的な結果となる場合があることがわかった。また、それに対して弾塑性 FEM 解析による極限解析で得られた崩壊荷重を用いれば適切に評価ができ、かつ応力分類が不要であることがわかった。このように、極限解析により崩壊荷重を求め、それを設計条件とする荷重と比較する評価においては、一次応力に対応する評価の対象が応力ではなく荷重となるので、「一次応力評価」と呼ぶのは適切ではない。そこで、その評価の対象とする荷重を「一次荷重」と呼ぶこととする。

また、弾塑性 FEM 解析を用いた極限解析結果から崩壊荷重を求める方法としては、二倍勾配法と必要な崩壊荷重の精度に対して解析の収束を確認しながら荷重を増加させて求めた荷重を用いる方法があり、後者は真の崩壊荷重の近似値となる。

本章では、一次応力評価にかわり極限解析による方法を採用するため、ASME B&PV Code における極限解析の考え方に基づき、一次荷重に対する極限解析の評価方法を検討する。また、原子炉圧力容器の一次荷重に対する評価への極限解析の適用性を検討する。ここでは 4.3 節では 2 次元軸対称体の皿型鏡板に対する極限解析の適用性を検討したので、3 次元モデルに対する適用性を確認するために、穴あき鏡板に対して極限解析を実施し、一次荷重に対する評価を行う。これらの検討結果に基づき、原子炉圧力容器の一次荷重に対する設計手法を策定する。

5.2 ASME B&PV Code における極限解析の考え方

5.2.1 経 緯

これらには極限解析や塑性解析に関する種々の検討結果がまとめられており、一次荷重評価に対する評価手法を検討するために、その極限解析の考え方を調査した。

5.2.2 各塑性荷重の定義

いくつかの塑性荷重（塑性域での限界荷重）が定義されている。

(1) First Yield Load (初期降伏荷重: P_1)

圧力容器で最も応力が高い点が降伏するときの荷重をいう。ここで、荷重－変
位関係の比例限とは必ずしも一致しない。

(2) **Limit Load (極限荷重: P_0)**

“Theoretical Limit Load”は、以下の条件を具体化した解析モデルに対する最大荷重値のことをいう。

- ひずみ-変位関係としては微小変形理論を使用する。
- 材料は剛塑性体、あるいは弾完全塑性体（許容できる降伏関数を適用）を使用する。
- 与える荷重及び発生応力は、変形による形状の変化を無視した釣り合い方程式により関係付けられる。

厳密解を近似的に得るために下界解法及び上界解法が開発された。これには弾完全塑性体・微小変形解析による極限解析と剛塑性解析による極限荷重の両者を用いることができる。また、荷重-変位関係に対して、弾完全塑性体を用いた弾塑性解析（極限解析）では崩壊荷重が生じるときの変位量は求まる。しかし、剛塑性解析では、ひずみ分布と変形形状は決まるが、崩壊荷重が生じるときの変位量は弾性域での変位量が計算できないために定義できない。

ここで、材料は、微小な切り欠き（傷）に対する感度が無視できる程、十分な延性を有していると仮定する。（これは脆性破壊を生じないことを意味しており、ASME Sec.III 及び JSME 設計・建設規格では非延性破壊防止評価があり、この仮定は規格の中で保証される。）

(3) **Ultimate Load (終局荷重: P_u)**

材料の引張り強さ（S_u）に対応する荷重で、例えば円筒容器や配管のバースト荷重に相当する。

(4) **Plastic Instability Load (塑性不安定荷重: P_{pi})**

終局荷重に対応する材料の不安定（引張強さ）の場合と構造の不安定の2種類が有り、ここでは後者を塑性不安定荷重として、降伏応力 S_y に依存し、構造の有意な変形を生じさせる荷重のことをいう。

(5) **Shakedown Load (シェイクダウン荷重: P_s)**

シェイクダウンを生じる最大荷重をいう。

5.2.3 崩壊圧力の評価

圧力容器に対する実験に基づく崩壊圧力の設定を踏まえ、崩壊圧力に対する現実的な評価方法が検討された。各評価方法を整理したものを表5-1 に示す。解析的には、弾完全塑性体を仮定した極限解析による崩壊荷重（極限圧力）が一次応力評価と対応する。また、解析的に構造的に不安定になる限界荷重として、大変形解析で荷重-変位関係の傾きがゼロとなる荷重が塑性不安圧力である。

実験に対して崩壊荷重を設定するためには、材料の加工硬化や大変形の効果も考慮
し、実験で設定可能な方法が必要となり、いくつかの定義方法が提案されてきた。当初は1%塑性ひずみ圧力、0.2%オフセットひずみ圧力及び0.2%オフセットひずみ圧力の代替法（比例限に基づく設定方法）のように降伏点に対応した圧力を設定する方法が提案された。その後、接線交差圧力、二倍変位圧力及び二倍勾配圧力のように荷重－変位関係に基づく方法が提案された。当初は、実験で得られたデータから降伏点に対応する圧力を求めようとしていた。実験で得られるデータのばらつきを踏まえると、荷重－変位関係から設定した方が、データの整理は容易と考えられる。現行のASME Sec.IIIのAppendix II、“Experimental Stress Analysis”では二倍勾配法が採用されており、弾性域は得られたデータに対して最小自乗法で設定し、その二倍勾配で引いた線と交わる実験点で崩壊荷重を設定すれば、設計者の判断による差は防ぐことができる。ただし、実験による場合は、いずれもひずみゲージを貼る位置、計測誤差の影響を受けることに注意が必要である。

次項に、楕円鏡を例に崩壊圧力の評価方法の比較を示す。

5.2.4 崩壊圧力の比較

2:1の楕円鏡について、実験及び理論式で各崩壊圧力の評価法を比較した結果を表5-2に示す。外面変位に着目した二倍変位による$P_{2\alpha}$と二倍勾配によるP_{ϕ}はいずれも実験と理論解でよい一致を示した。しかし、表面のひずみに着目した崩壊圧力は実験と理論解の差が比較的大きかった。崩壊圧力の評価に対しては局所的なひずみに着目するより、全体的な傾向を示す変位に着目した方が適しているものと考えられる。また、対象としたモデルにおいては理論解による$P_{0.2}$、$P_{2\alpha}$及びP_{ϕ}は近い値を示した。これらの崩壊圧力の関係は構造により異なり、4.3節の皿型鏡板に対する評価で述べたようにナックル部の影響により異なる。ナックル部の影響が比較的小さく、胴部や鏡部の塑性崩壊が支配する場合、図5-1(1)に示すような荷重－変位関係を示し、塑性ひずみが生じた以降は崩壊が急速に進むため、上記3種類の崩壊圧力は比較的近い値を示す。ナックル部の影響が比較的大きい場合、図5-1(2)に示すような荷重－変位関係を示し、比較的低い圧力で塑性ひずみを発生させる。しかしながら、塑性崩壊としての胴部あるいは鏡部で支配されるため、$P_{0.2}$及びP_{ϕ}は比較的近い値を示すが、$P_{2\alpha}$との差は大きくなる。

図5-2に楕円鏡及び円錐鏡の解析結果の例を示す。楕円鏡の場合、二倍勾配法は今回の解析ではひずみが二倍勾配線と交差するまでの計算はできなかった。円錐鏡の場合は二倍勾配法でも評価に用いる圧力は求まり、その結果は理論解である0.1109MPa (16.09psi)と近い値となった。評価に用いる圧力の計算は、少なくとも測定の対象の設計荷重以上まで計算できれば設計は可能である。上記の検討結果からは、$P_{2\alpha}$はP_{ϕ}より低くなるので、$P_{2\alpha}$を求めることで、ASME B&PV Codeの要求(P_{ϕ})を満足させることができる。
5.2.5 ひずみ制限と延性要求

極限解析では、極限荷重のときのひずみは定義できない。しかし、実際の容器は極限荷重を越えたときに、形状及び加工硬化に依存したひずみを生じる。

ここで、応力－ひずみ関係が \(\sigma = A \cdot \varepsilon^n \) とで表される加工硬化材に対し、片持ち梁での降伏ヒンジにおけるひずみ集中の程度を検討する。このとき、以下の関係が成立する。

\[
K_\varepsilon = \frac{(1+2n)}{(3n)} \quad \text{··· (5-1) }
\]

ここで、\(K_\varepsilon \) はひずみ集中係数（弾塑性解析によるひずみと弾性解析によるひずみとの比）である。

\(n = 0.1 \) のとき、\(K_\varepsilon \) は 4.0 となる。片持ち梁に対して規格では、極限解析で塑性崩壊するモーメントと弾性解析で表面が降伏するモーメントの比率である 1.5 倍を用いて制限するので、弾性解析で得られる表面のひずみは 1.5\(\varepsilon_y \) となる。それに \(K_\varepsilon = 4.0 \) を考慮すると、発生する弾塑性ひずみは 6\(\varepsilon_y \) となる。\(\varepsilon_y = 0.001 \) とすると、6\(\varepsilon_y \) でも 0.6%程度であり、延性材料に対してはそれ程大きなものではないと判断される。

次に、楕円鏡のナックル部の降伏ヒンジに対してひずみ量を調べる。図 5-3 に実験結果を示す。この場合、大変形弾塑性解析（Mises 降伏条件）による評価の結果、極限圧力は 10.8MPa(1560psi) が得られた。10.8MPa(1560psi) のときのヒンジ位置での経線方向ひずみは約 0.005（0.5%）であり、それ程大きなものではない。また、極限圧力の 2 倍の圧力を実験で与えた結果、経線方向ひずみは 0.060（6%）となった。例えば、原子炉圧力容器の主要耐圧部材に使用する低合金鋼材料の SFVQ1A の伸びの規格値は 16%以上であり、このような大きな圧力を想定したとしても実際に発生するひずみ量は問題となる大きさではないと考えられる。

以上のように、加工硬化及び幾何学的形状は降伏ヒンジ位置でのひずみに影響はするが、そのひずみ量は塑性崩壊に影響するようなものではない。ただし、上記の検討は内圧に対するものであり、外圧のように座屈を生じる条件下では塑性不安定は大きなひずみを生じうるので注意が必要とする。

5.2.6 まとめ

ASME Sec.III では、弾塑性解析を用いた評価については NB-3228 の Applications of Plastic Analysis で規定されている。その中の極限解析に対しては崩壊荷重を求めることを要求しているが、具体的な評価方法の規定はない。また、ASME Sec.III, Appendix II の Experimental Stress Analysis において、実験により設計する場合には二倍勾配法を用いて崩壊荷重を求める。すなわち、ASME Sec.III では応力解析で崩壊荷重を求める場合には崩壊荷重の設定方法は任意であり、実験による場合については統一的な方法を規定する必要があるので、二倍勾配法を規定しているものと考えられ
る。
一方、WRC Bulletin 254 基づくと、崩壊荷重を応力解析で求める場合は極限解析
を用いればよいと考えられる。しかしながら、WRC Bulletin 254 を策定した当時(1979
年)では現在のように弾塑性 FEM 解析が容易に使える時代ではなかったので、応力解
析を用いるにしても崩壊荷重の設定に対しては二倍勾配法のようにある程度の目安が
必要だったものと推定される。この二倍勾配法に対しては、ASME B&PV Code では
いくつかの変遷が有することがわかった。最初は Sec.VIII の 0.2%オフセットひずみ法
及び比例限による方法が用いられたが、これらは降伏点に対応する圧力となっている。
その後、Sec.III で二倍変位法が適用され、Sec.III では翌年、Sec.VIII では 3 年後に
現状の二倍勾配法が適用されている。いずれの手法も崩壊荷重を実験で求めるにはひ
ずみゲージの位置、計測誤差等が精度に影響してくる。0.2%オフセットひずみ法、比
例限による方法及び二倍変位法については、降伏点に相当する荷重を求めることに対
し、二倍勾配法は弾性域と考えられる範囲の勾配を最小自乗法で整理すればいいので、
二倍勾配法の方が設計者の違いによる影響は小さいものと考えられる。ただし、二倍
勾配法を適用するとしても、変位着目点や実験におけるひずみ・変位計測位置につい
ては注意が必要であることは Code でも示されている。
弹塑性 FEM 解析を用いて極限解析を実施する場合、コンピュータの発達により 3
次元 FEM モデルであっても崩壊荷重が必要な精度になるまで計算することは可能に
なってきている。したがって、WRC Bulletin 254 で定義されている極限解析の考え方
を用いて弾塑性 FEM 解析を行い、極限荷重を求めればよいと考えられる。また、二
倍勾配法は保守的な方法であり、それにより求められた崩壊荷重が許容値を上回り、
それ以上解析を継続する必要がない場合に適用すれば解析を簡略化することができ、
有効である。

5.3 穴あき鏡板に対する極限解析
5.3.1 3 次元 FEM モデルに対する極限解析の適用
4.3 篇及び 4.4 篇では 2 次元 FEM モデルに対する極限解析を実施した。本節では、
より複雑な 3 次元 FEM モデルに対して極限解析を適用し、以下について検討した結果
を述べる[5-3, 4]。
・穴あき鏡板に対して 3 次元 FEM 解析により極限解析及び弾塑性 FEM 解析を行っ
て得られた崩壊挙動
・3 次元形状である穴あき鏡板の多孔部を 2 次元の等価剛性(降伏応力)で置き換えた
2 次元 FEM モデルによる崩壊解析
・複数の機関による極限解析及び弾塑性 FEM 解析のベンチマークした結果
5.3.2 解析モデル

穴あき鏡板の形状、寸法及び物性値を図5-4及び表5-3に示す。穴は三角配列とし、板厚は穴の補強に必要な面積が補強に有効な面積に対して95～98%程度となるように設定した。構造の対称性から解析モデルは30°の範囲をモデル化した。また、内圧の負荷において、穴部に本来加わる内圧を補償するため、穴の容器内面側の外周に等価な外力を加えるものとする。この荷重は穴の位置（穴の角度θ）によって内圧を受ける面積と周長Lがそれぞれ異なるために異なる値をとり、内圧をP、穴径をdとすると、荷重Fは次式で表され、その荷重が周長のθ方向に加わるものとする。

\[F = \left(P \cdot \frac{\pi d^2}{4} \right) \cos \theta \] \hspace{1cm} (5-2)

解析には穴の内面の内周にfが一様に作用するものとする。

\[f = \frac{F}{L} \] \hspace{1cm} (5-3)

5.3.3 降伏点及び等価剛性

極限解析においてはASME Sec.IIIに従い、材料は\(S_y = 1.5 S_m \)とする弾完全塑性体とする。また、弾塑性FEM解析では次式の応力-ひずみ関係を用いる。

\[
\begin{align*}
\sigma < 370 \text{ MPa} : & \quad \sigma = E \cdot \varepsilon \\
\sigma \geq 370 \text{ MPa} : & \quad \sigma = 370.0 + 862.62 \cdot (\varepsilon - \varepsilon_0)0.54 \\
\end{align*}
\]

\[\varepsilon_0 = 370/E = 2.1 \times 10^{-3} \] \hspace{1cm} (5-4)

ここで、許容圧力はこの解析で得られた崩壊荷重を(2/3)倍することで求める。また、2次元モデルに対する穴あき部の等価剛性については、穴が三角配列なので、ヤング率とポアソン比についてはASME Sec.III, Appendix A-8000に従い設定する。

2次元モデルの等価降伏点\(S_{y*} \)については、Uragami et al.\[5\]に基づき平板に対する三角配列の穴に対する評価式のx方向とy方向の値を平均した次式を用いることとする。

\[S_{y*}/S_y = 1.08 \eta - 0.055 \] \hspace{1cm} (5-5)

ここで、\(\eta \)は穴のピッチをp、穴と穴の距離をh（図5-4参照）とすると次式で得られる。

\[\eta = h/p \] \hspace{1cm} (5-6)

5.3.4 穴あき鏡板の崩壊解析

穴あき鏡板に対して5機関で3次元モデル及び2次元モデルに対して極限解析及び弾塑性FEM解析を実施した。

代表的な例として、グループAの3次元FEMモデルを図5-5、2次元FEMモデルを図5-6に示す。多孔部が45°まであるので、2次元モデルでは45°の範囲までの等価剛性を考慮した。また、極限解析の荷重-変位関係を図5-7、弾塑性FEM解析の荷重-変位関係を図5-8に示す。荷重-変位関係については、極限解析及び弾塑性FEM解
解析とも3次元解析の結果の方が崩壊荷重は高く、2次元解析結果は3次元解析結果に比べて保守的となった。図5-7及び図5-8に二倍勾配法による崩壊荷重を示す。二倍勾配法による崩壊荷重は、極限解析だけでなく弾塑性FEM解析についてもFEM解析の最終荷重とほぼ同等となった。荷重一変位関係からも荷重が崩壊荷重レベルになると急激に変形が進んでいることがわかる。これは、内圧により穴あき鏡板に発生する応力が基本的には一次応力であることを示唆している。

崩壊の状況を調べるため、3次元FEMモデルに対する相当塑性ひずみ分布を図5-9、2次元FEMモデルに対する相当塑性ひずみ分布を図5-10に示す。図5-9から、3次元FEM解析結果では穴と穴との間のリガメント部に塑性ひずみが集中していることがわかる。特に、最外周の穴の方が斜角になることにより穴の占める割合が中央部に対して相対的に大きくなり、荷重を受け持つ鏡面が相対的に少なくなるため、最外周のリガメントでの塑性ひずみの集中が大きくなっている。一方、2次元FEM解析は多孔部である45°の領域に対して外周部より低い等価剛性を用いており、その外周がそれより高い剛性となっているため、頂部の変位が相対的に大きくなった。そのため、図5-10に示すように頂部にひずみが集中し、頂部側から崩壊が進んだものと考えられる。

以上から、3次元モデルの穴あき鏡板の変形そのものを2次元モデルで模擬するためには更なる改良が必要であるものの、2次元モデルの等価剛性を適切に選べば保守的な結果が得られることが可能と考えられる。

次に、図5-7から、極限解析における3次元解析モデルの崩壊荷重を評価すると31.5MPaとなった。これにより、許容圧力は21.0MPa（31.5×（2/3）MPa）となり、最高使用圧力の17.16MPaよりも2割以上も高くなった。これは、穴の補修計算が保守的であることを意味している。

5機関でベンチマークにより2次元モデル及び3次元モデルに対して極限解析及び弾塑性FEM解析により二倍勾配法で崩壊荷重を求めた結果を表5-4に示す。表5-4より、2次元モデル及び3次元モデルとも各機関での差は小さかった。2次元モデルの解析結果は、AグループとBグループでは、用いたプログラム及び節点数・要素数は異なるが、崩壊荷重は極限解析及び弾塑性FEM解析とも同等の結果が得られた。そこで、Cグループが用いたSTANSA/STAXは、解析法としては降伏点を超えた部分のヤング率を適用する応力一ひずみ関係に適用するように繰り返し修正して収束計算を行う「剛性補正法」を使用している[5][6]。そのため、応力は高い側から収束していくので、他の解析結果と比べると若干高い側の値になった。

3次元モデルの解析結果は、プログラム、要素のタイプ、節点数・要素数が異なっても有意な差はなかっ。また、Eグループでは弾性代償法も用いて解析を行った[7][8]。表5-4に示すように、グループEで同じFEMメッシュを用いて計算したABAQUSの極限解析及び弾塑性FEM解析の崩壊荷重の結果と比べると、弾性代償法の崩壊荷重の方が保守的な結果となった。
5.4 一次荷重に対する評価方法

5.4 節では弾塑性 FEM 解析も検討したが、設計規格における一次応力に対する評価の考え方は弾完全塑性体に対する極限解析に基づいており、WRC Bulletin 254 の定義も踏まえ、一次荷重に対しては極限解析を用いることとする。

現行の ASME Sec.III 及び JSME 設計・建設規格で取り込まれている設計条件に対する極限解析においては、1.5Sn を降伏点とする極限解析による崩壊荷重を 1.5 で除すことにより、Sn ベースの崩壊荷重としている。一方、Sn を降伏点とする極限解析で評価すれば、直接 Sn ベースの崩壊荷重が得られる。対象とする荷重が複数ある場合、それらの荷重を比例荷重で与える場合には両者に差異はない。しかし、例えば内圧を加えた状態で地震荷重を負荷させる場合もあり、以下に示すように Sn を降伏点とする極限解析を採用するものとする。

・複数の荷重を順番に与える場合を考える。一つ目の荷重 A は設計仕様書で与えられた設計荷重で固定し、二つ目の荷重 B を増加させ、崩壊を求める場合を考える。このとき、図 5.11 に示すように、一つ目の荷重 A による発生応力では Sn ベースの降伏曲面を超えるが 1.5Sn ベースの降伏曲面の中にあるような場合を想定する。二つ目の荷重 B の許容荷重は、極限解析を行い、荷重 B を増加させていき、得られた崩壊荷重（降伏曲面に到達）(1/1.5)倍することで得られる。このとき、一つ目の荷重 A による発生応力は 1.5 倍すると 1.5Sn ベースの降伏曲面を超えるので、単独では基準を満足しないことになる。しかしながら、二つ目の荷重 B を考慮することで一つ目の荷重 A が許容されることになる。

・上記の不具合は対象とする荷重を全て 1.5 倍すれば解決される。しかしながら、解析で直接得られた荷重 - 变位図より求めた崩壊荷重をそれを(1/1.5)倍することで得られる許容荷重が異なることになるため、煩雑になる。

・Sn を降伏点とする極限解析としておけば、これらは解消され、許容基準との整合性も明確になる。

さらに、極限解析の解析方法としては、弾完全塑性体を仮定した弾塑性 FEM 解析を行えばよい。その他の方法として、5.4 節の穴あき鏡板の 3 次元モデルのベンチマークで使用した弾性仮想法は数回の弾性解析で結果が得られ、真の崩壊荷重に対して下界が得られることから簡便でかつ保守的な方法と考えられるので、この方法も適用してよいこととする。

弾完全塑性体を仮定した弾塑性 FEM 解析を用いる場合、基本的には必要な崩壊荷重の精度に対して解析の収束を確認しながら荷重を増加させ、得られた最大の荷重値を真の崩壊荷重の近似値として使用することとする。対象によっては二倍勾配法により求められた崩壊荷重が許容値を上回り、それ以上解析を継続する必要がない場合もありうるの
で、二倍勾配法も適用してよいこととする。

5.5 結 言
一次応力評価にかわり極限解析による方法を採用するため、ASME B&PV Code における極限解析の考え方に基づき一次荷重に対する極限解析の評価方法を検討した。また、3次元モデルに対する極限解析の適用性を確認するために、穴あき鏡板に対して極限解析を実施し、評価した。これらの検討結果は以下のとおりである。

1) ASME B&PV Code における極限解析の考え方を調べた結果、現行の ASME B&PV Code で用いられている二倍勾配法は種々の評価方法があった中で、最終的に選ばれた手法であることがわかった。また、実験により評価する場合については統一的な方法を規定する必要があるので、二倍勾配法を ASME B&PV Code では規定しているものと考えられる。ただし、現状のコンピュータであれば、3次元弾塑性 FEM 解析であっても十分な精度の解を計算することは可能であり、この方法が WRC Bulletin 254 で定義されている極限解析に相当するので、弾塑性 FEM 解析を用いた極限解析を使用すればよいと考えられる。また、二倍勾配法は保守的な方法であり、それにより求められた崩壊荷重が許容値を上回り、それ以上解析を継続する必要がない場合に適用すれば解析を簡略化することができ、有効である。

2) 3次元モデルに対する極限解析の適用性を確認するために、穴あき鏡板に対して極限解析を実施し、評価した結果、その適用に問題ないことがわかった。複数の機関でベンチマークした結果も有意な差のない結果が得られた。また、弾性解析の繰返しで崩壊荷重を求める弾性代償法の有効性も確認した。

3) 一次荷重に対する設計手法としては、各々の供用状態の許容値を降伏点とする弾完全塑性体を仮定した弾塑性 FEM 解析(極限解析)を用いて評価することとする。その崩壊荷重は、基本的には必要な崩壊荷重の精度に対して解析の収束を確認しながら荷重を増加させ、得られた最大の荷重値を真の崩壊荷重の近似値として使用することとする。対象によっては計算時間が大幅に長くなる場合もありうるので、二倍勾配法及び弾性代償法を適用してよいこととする。

5.6 参考文献
[5-1] 朝田、平野、永田、笠原、「機械学会設計・建設規格事例規格における弾塑性有限要素解析を用いたクラス1容器に対する強度評価手法」、日本機械学会論文集(A編)、74巻 748号(2008-12), 論文 No.08-0541, p.1485.

[5-4] "弾塑性解析活用設計基準検討会(EPD基準検討会：Committee on Elastic-Plastic Analysis Design Guideline)成果報告書"(社)火力原子力発電技術協会, 2003 年(平成15年)10月

(1) ナックル部の影響が比較的小さい場合

(2) ナックル部の影響が比較的大きい場合

図 5-1 楕円鏡の崩壊圧力に対する圧力-ひずみ関係の影響[5-2]
図5-2 楕円鏡及び皿型鏡の解析結果[5-1]

図5-3 楕円鏡の実験データ[5-1]
図 5-4 穴あき鏡板の解析形状
図 5-5 穴あき鏡板の 3 次元 FEM モデル
図 5-6 穴あき鏡板の 2 次元 FEM モデル
図 5-7 穴あき鏡板の極限解析による崩壊荷重

図 5-8 穴あき鏡板の弾塑性 FEM 解析による崩壊荷重
図5-9 3次元モデルの弾塑性FEM解析の相当塑性ひずみ分布（圧力：44.9MPa）の例

図5-10 3次元モデルの弾塑性FEM解析の相当塑性ひずみ分布（圧力：40MPa）の例

図5-11 複合荷重の例
表5.1 崩壊圧力の評価方法

<table>
<thead>
<tr>
<th>名称</th>
<th>提案者</th>
<th>年代</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit Pressure ((p_0 : \text{下図})) [極限圧力]</td>
<td>[定義]</td>
<td>－</td>
<td>弾塑性解析に対して、微小変形〜弾完全塑性体解析で求めた極限圧力。極限圧力は実機容器の崩壊圧力の推定値。弾完全塑性体に対する定義は、(\frac{dP}{d\delta} > 0) ((P < P_0))実験の大変形・加工硬化を考慮するときには適用できない。</td>
</tr>
<tr>
<td>Plastic-Instability Pressure ((P_{pi} : \text{下図})) [塑性不安定圧力]</td>
<td>[定義]</td>
<td>－</td>
<td>実際の塑性崩壊荷重であり、崩壊圧力の推定ではない。容器が比較的厚く、大変形の影響が小さい場合、極限圧力と同じになる場合がある。定義は大変形解析で、荷重〜変位関係の傾きがゼロ。</td>
</tr>
</tbody>
</table>
| 1% Plastic Strain Pressure \((P_{1}) \) \[1% 塑性ひずみ圧力] | Townly他 | 1971 | 相当塑性ひずみが1%での圧力。
材料特性、ひずみ集中等の影響が大きい。
ひずみベースのものは最大ひずみ位置の場所による誤差が影響する。 |
| 0.2% Offset Strain Pressure \((P_{0.2}) \) \[0.2%オフセットひずみ圧力] | Sec.Ⅷ | 1971 | 0.2%の永久ひずみを生じる圧力。
ひずみ評価位置による誤差が影響する。 |
| Proportional Limit Definition \((P_{pl} : \text{下図}) \) \[比例限定義] | Sec.Ⅷ | 1971 | 0.2%オフセット法の代替法。荷重〜変位が一向線でなくなるときの圧力。
測定点は最も応力が高くなる位置とする。実験的には線形から外れる点の設定に誤差を受けやすい。 |
| Tangent-Intersection Pressure \((P_{ti} : \text{下図}) \) \[接線交差圧力] | Save | 1972 | 弾性域と塑性域の接線の交差点とする。
塑性域での接線の引き方の影響が大きい。 |
| Twice-Elastic-Deformation Pressure \((P_{2y} : \text{下図}) \) \[二倍変位圧力] | ASME Sec.Ⅲ | 1974 | 降伏圧力の弾性変位あるいは弾性ひずみの2倍のときの圧力。
弾性域の定義に影響を受ける。 |
| Twice-Elastic-Slope Pressure \((P_{2s} : \text{下図}) \) \[二倍勾配圧力] | Sec.Ⅲ Sec.Ⅶ | 1975 1977 | 弾性域の勾配の2倍の勾配との交点。定義上 \(P_{s} > P_{2y} \)となる。用いるひずみ、変位に注意が必要。誤差の影響は最も小さいが、交点が求められないケースもある。 |

![圧力・変位図](image-url)
2:1椭円鏡の崩壊圧力の比較

直径=921.8mm [36.25in]、板厚= 6.6～9.7mm[0.26～0.38in]

<table>
<thead>
<tr>
<th>評価方法</th>
<th>着目点</th>
<th>崩壊圧力 (MPa) [psi]</th>
<th>実験</th>
<th>理論解(*) (Mises 応力解)</th>
</tr>
</thead>
<tbody>
<tr>
<td>比例限圧力, (P_{pl})</td>
<td>外面変位</td>
<td>5.05 [732]</td>
<td>4.55 [660]</td>
<td></td>
</tr>
<tr>
<td>0.2%オフセットひずみ圧力 (P_{0.2})</td>
<td>(\varepsilon_\phi) 内面</td>
<td>5.79 [840]</td>
<td>6.14 [890]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\varepsilon_\theta) 内面</td>
<td>7.17 [1040]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二倍変位圧力 (P_{2\gamma})</td>
<td>(\varepsilon_\phi) 内面</td>
<td>5.56 [806]</td>
<td>5.83 [845]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\varepsilon_\theta) 内面</td>
<td>6.54 [949]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>外面変位</td>
<td>5.68 [824]</td>
<td>5.65 [820]</td>
<td></td>
</tr>
<tr>
<td>二倍勾配圧力 (P_\phi)</td>
<td>(\varepsilon_\phi) 内面</td>
<td>5.90 [856]</td>
<td>6.00 [870]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\varepsilon_\theta) 外面</td>
<td>6.95 [1008]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>外面変位</td>
<td>5.82 [844]</td>
<td>5.86 [850]</td>
<td></td>
</tr>
</tbody>
</table>

(*) 理論式によるひずみに対する評価では、ひずみは\(\varepsilon_\theta \)の内外面での平均で評価した。
<table>
<thead>
<tr>
<th>項目</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>内径（R）</td>
<td>2500 mm</td>
</tr>
<tr>
<td>板厚（t）</td>
<td>230 mm</td>
</tr>
<tr>
<td>穴径（d）</td>
<td>200 mm</td>
</tr>
<tr>
<td>最外周穴位置の角度（θ）</td>
<td>45°</td>
</tr>
<tr>
<td>穴のピッチ（ρ）</td>
<td>441.9 mm</td>
</tr>
<tr>
<td>リガメント効率（η）</td>
<td>0.547</td>
</tr>
<tr>
<td>設計温度</td>
<td>300 ℃</td>
</tr>
<tr>
<td>最高使用圧力</td>
<td>17.16 MPa</td>
</tr>
<tr>
<td>設計応力強さ（S_m）</td>
<td>184 MPa</td>
</tr>
<tr>
<td>ヤング率（E）</td>
<td>175 GPa</td>
</tr>
<tr>
<td>ポアソン比（ν）</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>モデル</th>
<th>グループ</th>
<th>プログラム</th>
<th>要素タイプ</th>
<th>節点数</th>
<th>要素数</th>
<th>極限解析（*1）[MPa]</th>
<th>弹塑性解析（*1）[MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>ABAQUS</td>
<td>8節点高次</td>
<td>457</td>
<td>128</td>
<td>26.4</td>
<td>38.6</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>MARC</td>
<td>8節点高次</td>
<td>522</td>
<td>144</td>
<td>26.4</td>
<td>38.6</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>STANSAS/STAX</td>
<td>4節点低次</td>
<td>65</td>
<td>48</td>
<td>27.7</td>
<td>40.6</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>STANSAS/STAX</td>
<td>4節点低次</td>
<td>225</td>
<td>192</td>
<td>27.1</td>
<td>39.7</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>ABAQUS</td>
<td>20節点高次</td>
<td>6353</td>
<td>1136</td>
<td>31.5</td>
<td>45.9</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>MARC</td>
<td>20節点高次</td>
<td>6363</td>
<td>1144</td>
<td>31.9</td>
<td>45.3</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>ABAQUS</td>
<td>8節点低次</td>
<td>2100</td>
<td>1380</td>
<td>32.7</td>
<td>46.5</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>弾性代償法（*2）</td>
<td>8節点低次</td>
<td>2100</td>
<td>1380</td>
<td>32.4</td>
<td>43.4</td>
</tr>
</tbody>
</table>

（*1）二倍勾配法により求めた崩壊荷重
（*2）弾性代償法の解析結果は文献[5-7]から引用。
6. 繰返し荷重に対する設計手法の検討

6.1 緒 言

5章の検討結果から、一次荷重に対しては極限解析による評価で塑性崩壊を防げたことがわかった。これにより、応力分類も不要となり、元々の規定の考え方と合致した評価手法となる。

一方、一次＋二次応力評価及び疲労評価に用いる荷重条件は、供用状態A及び供用状態Bの内圧・温度の過渡及び外荷重である。これらの荷重の中の一次荷重については、設計条件に対する一次荷重評価で塑性崩壊が生じないことが保障される。したがって、4.5節の検討結果から、シェイクダウン及び熱応力ラチェットの評価を実施し、その結果に基づき、塑性ひずみを生じる荷重条件であれば疲労評価においてはKe係数を用いた簡単な弾塑性解析を用いて評価を行えばよい。このような供用状態A及び供用状態Bの機械的または熱的荷重で、繰返し作用する荷重を『繰返し荷重』と呼ぶこととする。

本章では、繰返し荷重に対する評価のうち、シェイクダウン及び熱応力ラチェットの評価において、応力分類が必要な評価方法を検討する。具体的には、現行の一次＋二次応力に対する3Sm規準やMiller線図の考え方を踏まえ、シェイクダウン条件を弾性FEM解析に基づき評価することとする。その判定基準を満足しない場合に対して、熱応力ラチェットを生じない条件を弾塑性FEM解析に基づき評価する判定基準を策定する。これらの策定した判定基準を用いて原子炉圧力容器の代表的な構造部位を評価し、その妥当性の検証を行う[6-1,2,3]。なお、疲労評価及び簡易弾塑性解析については次章で述べる。

6.2 シェイクダウン評価の判定基準

6.2.1 方 針

シェイクダウン評価の判定基準は、一次＋二次応力評価の3Sm規準と整合をとること。また、弾性解析で得られた応力分布から直接評価することとし、応力分類は不要とする。

現行の熱応力ラチェット評価の規定は、Millerの単軸の応力状態に基づく判定基準を用いているが、原子炉容器の構造は単純な円筒形だけでなく、種々の構造不連続部等が存在するため、図6-1に示すようにピーク応力の発生要因となる構造要素を一様シェル部(円筒部)、材料の局部的不連続、局部的構造不連続、総体的構造不連続及びノズルコーナ部に分類し、それぞれについて判定基準を検討する[6-1,2,3]。

6.2.2 一様シェル部(円筒部)

図6-2に、熱応力(σt)の板厚内分布が放物線分布と線形化処理したときにその放物線分布と等価となる直線分布に対して、その直線分布の熱応力が表面で3Smの場合の分布を各々示す。FEM解析で得られた応力分布は一般的には放物線分布に近く、この場合、
図6-2に示すように表面から内側に板厚の10%位置で3Smとなる。一方、線形分布の場合は、10%位置では0.8×3Smとなる。また、表面の応力が応力分布の非直線成分を考慮することで3Smを超える場合、10%位置で判定することで応力分布の非直線成分の影響を極力排除できるものと考えられる。そこで、このような繰返し降伏域範囲(以下，“CYA (cyclic yield area)”と略称)と呼び、CYAに対する判定基準を策定し、応力分布が不要となる評価方法とする[6-4]。

Miller線図は直線温度分布及び放物線温度分布を想定した場合に、内圧による応力が最も大きくなる周方向に着目し、単軸応力状態に対してラチェットを生じない条件を設定した線図である。Miller線図(直線温度分布及び放物線温度分布に対する制限線図)[6-5]と3Sm基準との関係を熱応力(σS)と内圧による応力(σP)で整理すると図6-3のようになる。図6-3に示すように、σP/SyとσS/Syの和が1以下であれば完全に弾性の状態にある。σP/Syが2以下かつMillerの制限線図の下側にある場合はシェイクダウンする状態にある。σS/Syが2を超え、かつMillerの制限線図の下側にある場合は塑性サイクルを生じるのがラチェットは生じない領域である。一次応力制限からσPは3Sm ((2/3)Sy)以下となるので、その限界線も合わせて図に示している。Millerの制限線図では直線温度分布の方が厳しく、以降の検討では保守的となる直線温度分布の線図を対象とする。

Miller線図は円周方向応力のみに基づいているが、実際の多軸応力状態での円筒のラチェット限界を確認するため、Yamamotoら[6-6]は、内圧と温度勾配の繰返しを受ける円筒モデルに対して、σP = 1.5Smの弾完全塑性体を用いた繰返し弾塑性解析(10サイクル)を行った。解析モデルおよび内圧・温度の負荷の与え方を図6-4に示す。温度分布には保守的な方の直線温度分布を用いた。解析は以下に示す4種類のグループに対して行った。これらのグループの解析条件とMiller線図との関係を図6-5に示す。

[グループ A]
一次応力である内圧による靭応力(σP)をS_p(3Sm制限に対してするように1.5Smとする)で割ったσP/Sy=0.5で一定とし、二次応力の熱応力(σS)はMiller線図上のσP/Sy=2(3Sm基準上限)を基準として、それに対する熱応力の比率が0.9から1.5までをパラメータとしてシェイクダウン解析を行う。

[グループ B]
σP/Sy=3で一定とし、Miller線図上のσP/Sy=1/3を基準とし、それに対する内圧の比率が0.9から1.5までをパラメータとしてシェイクダウン解析を行う。

[グループ C]
σP/Sy=2/3(p_m=S_mの上限)で一定とし、Miller線図上のσP/Sy=4/3を基準とし、それに対する熱応力の比率が0.9から1.4までをパラメータとしてシェイクダウン解析を行う。

[単軸モデル]
上記の検証計算の妥当性を確認するためにMiller線図の考え方と合わせた解析を行うこととし、円周方向応力のみが発生するような単軸応力として、グループAの荷重条件を用いて、シェイクダウン解析を行う。

上記のグループ毎の基準の荷重を用いて横軸をそれに対する荷重の比率とし、縦軸を9サイクルから10サイクルの間の相当塑性ひずみの増分で整理した解析結果を図6-6に示す。図6-6で、相当塑性ひずみの増分が急激に上昇している領域において塑性ひずみが蓄積され、ラチェットを生じている領域である。単軸モデルは基準との比が1より大きいところで相当塑性ひずみの増分が急激に大きくなる。これは単軸応力に基づいたMiller線図と対応しており、本モデルが妥当であることが確認された。また、多軸を考慮した場合、グループAおよびグループBでは基準との比が1.2より大きいところで相当塑性ひずみの増分が急激に増加しているため、Miller線図に対して1.2倍の裕度があると判断される。

以上から、多軸の効果によりMiller線図には1.2倍の裕度があることが確認された。そこで、図6-2の直線分布の10%t位置での応力が0.8×3Smであり、それに上記の1.2倍の裕度を考慮することで、表面から内側に10%t位置で3Sm以下とすることがCYAの基本的な判定基準とする。また、図6-3から、Pmが0.75Smを超える範囲ではMiller線図の許容値は3Smを下回る。これについては、一様シェルに対してはMiller線図と同様の制限を課すべきと判断し、Pmが0.75Smを超える範囲については許容値を3Smから6Sm-4Pmに置き換えることとする。したがって、一様シェルに対するシェイクダウン評価の判定基準は、「3Smか6Sm-4Pmのいずれか小さい方の値を超える範囲が表面から内側に板厚の10%の位置を超えて広がっていないこと」とする。

構造及び材料の不連続部については、その部分の応力はピーク応力も含んでいるため、6Sm-4Pmの判定基準を適用するのは過度に保守的である。また、一般的には構造及び材料の不連続部から離れた位置に一様シェル部が存在するため、その部分に対して一様シェルに対する判定基準を適用すればよい。構造及び材料の不連続部と一様シェル部との境界については、構造及び材料の不連続によって局部的に生じる応力は√rt（r:シェルの平均半径、t:板厚）離れると減衰するので、一様シェルと構造及び材料の不連続部との境界は局部的不連続部から√rtの位置とする。

6.2.3材料の局部的不連続

低合金鋼のノズルとステンレス鋼のセーフエンドとの異材維手や低合金鋼材に対するステンレスのクラッド溶接のように材料が局部的に不連続となる部分がある。この材料の局部的な不連続により発生する応力は、構造物の総体的な変形には寄与せず、その境界部のひずみの不連続により生じるので、本質的にはピーク応力と考えられる。したがって、シェイクダウン及び熱応力ラチェットの観点では基本的にはこの応力による影響はないものと考え、規定を統一するため、判定基準を「3Smを超える範囲が表
面から内側に板厚の10%の位置を超えて広がっていないこと」とする。

6.2.4 局部的構造不連続、総体的構造不連続及びノズルコーナ部

構造不連続についてはいくつかのタイプが考えられ、図6-1に示すように、ノズルのサーマルスリーブの取付け部のような局所的な構造不連続、圧力容器において板厚や内径が変化する場合のような総体的構造不連続及び総体的構造不連続の極端な例であるノズルコーナ部の3種類に分類した。

これらの構造不連続部の表面に発生する応力にはピーク応力が含まれているが、10%t位置での応力ではその影響は小さくなると考えられ、また影響が残っていても応力は高い側になることから、判定基準を「3Smを超える範囲が表面から内側に板厚の10%の位置を超えて広がっていないこと」とする。

6.3 熱応力ラチェット評価の判定基準

シェイクダウン評価の判定基準を満足しない場合、塑性ひずみが生じることを前提に進行性変形が生じるか否かを評価（熱応力ラチェット評価）する必要がある。そこで、熱応力ラチェットの評価は、一次＋二次応力評価の3Sm規定と整合性をとり、1.5Smを降伏点とする弾完全塑性体を仮定する。与えられた荷重サイクルに対して弾塑性FEM解析で応力評価を行い、熱応力ラチェットが生じていないことを確認する。このとき、進行性変形が生じる場合は局部的にひずみが累積していくので、これに着目する熱応力ラチェット評価の判定基準が考えられる。また、熱応力ラチェットが生じない条件としては、荷重サイクルが発生しても当該の構造に弾性域が残存すれば熱応力ラチェットは生じないとする考え方も適用することができる。

以上から、具体的には以下の2種類の判定基準を設定する。

(1) 塑性ひずみに着目する方法

局部的な最大のひずみに注目し、その塑性ひずみの増分が無視できることを条件としてラチェットの進行を評価する方法が考えられる。これは、ラチェット変形は総体的なものであり、その変形は局部にも影響するため、このような評価基準が考えられる。ASME Sec.IIIでは、Ratchetingは以下のように定義(NB-3213.33 Ratcheting)されており、記の考え方はASME Sec.IIIの定義とも整合する考え方である。

"Ratcheting is a progressive incremental inelastic deformation or strain which can occur in a component that is subjected to variations of mechanical stress, thermal stress, or both."

そこで、荷重を繰り返し負荷して弾塑性FEM解析(1.5Smを降伏点とする弾完全塑性体)を行い、1回の繰り返し負荷により発生する相当塑性ひずみ増分が減少傾向にあり、か
つ無視できる大きさ以下になることを熱応力ラチェット評価の判断基準として設定する。ここで、無視できる大きさの基準値とし、弾完全塑性体による解析の保守性や、数値解析技術を勘案し、後述する検証計算の結果を踏まえて10^{-4}以下とする[6-1, 2, 3]。

(2) 弾性域に着目する方法
部分的に降伏が進行している場合であっても、構造の板厚内の一部に弾性域が残存すれば、それによりラチェット変形が生じ得ず、構造としては弾性挙動を示しラチェットは生じないため、弾性域に着目した評価基準も考えられる。Bree[6-7]および国内高速炉の解説[6-8]でも弾性を保つ領域の残存が非ラチェット領域に対応することが述べられている。
そこで、数回のサイクルに対する弾塑性FEM解析(1.5S_yを降伏点とする弾完全塑性体)を実施後、最後の荷重サイクルを通して弾塑的挙動を示す領域が着目する構造の評価線上で残存しており、その前の荷重サイクルに対してその評価線上の弾性域の寸法が減少しないという判定基準を設定する[6-9]。

6.4 判定基準に対する検証解析
6.4.1 検証解析
図6-1で分類した各構造に対して構造要素をモデル化し、弾塑性解析によってその判定基準に対する検証解析を実施した[6-3, 4, 9, 10, 11, 12, 13]。一様シェルについては6.2.2に検討結果を示した。材料の不連続については、材料の局部的不連続点に生じる応力は構造物の相対的な変形には寄与せず、従って本質的にピーク応力と考えてよく、このような応力は界面に沿って限定された範囲に発生するため、熱応力ラチェットへの影響は小さいと考えられる。そこでここでは、熱応力ラチェットに対して厳しくなる構造不連続部の代表的な構造として、平底容器及びノズルコーナ部に対する検証結果を以降に示す。

6.4.2 平底容器に対する検証解析
(1) 解析方針
構造不連続を有する代表的な構造として図6-7に示す平底容器を対象とする。平底容器は円筒胴が径方向に変形するのに対して、厚肉の平底は大きな変形はせず、構造不連続部においてその変位差による応力が発生する構造であり、その影響を解析により検討する。
シェイクダウン評価の判定基準は「3S_mを超える範囲が表面から内側に板厚の10%の位置を超えて広がっていないこと」である。また、熱応力ラチェット評価の判定基準は、①荷重を繰り返し負荷することによって、相当塑性ひずみの増分が減少傾向にあり、かつ無視できる大きさ(10^{-4}以下になること、②最後の荷重サイクルを通し
て弾性的挙動を示す領域が着目する構造の評価線上で残存しており、その前の荷重サイクルに対してその評価線上の弾性域の寸法が減少しないことのいずれかを満足することである。

そこで、シェイクダウン評価の判定基準と熱応力ラチェット評価の判定基準を以下に示す手順で検証する。

a. 弾性解析を実施し、Mises 応力を計算する。
b. 表面から内側に板厚の 10%の位置での Mises 応力が 3S_m となるように温度条件を設定する。
c. 設定した温度条件に対して、1.5S_m を降伏点とする弾完全塑性体を仮定した弾塑性解析による繰返し計算を実施する。
d. 熱応力ラチェット評価の判定基準を満足するかを調べる。

(2) 解析条件
図 6-7 の解析モデルに対して、図 6-8 の解析条件を用いて検討する。荷重サイクルは、平底鏡は 0℃で温度を一定とし、円筒胴のみを 0℃→T_S℃→0℃の温度サイクルを与える。ここで、内圧は内面に 8.62MPa で一定とするが、解析ケースによっては円筒胴部の軸方向応力を付与するために平底鏡のみに追加の一定内圧を加える。

応力解析は汎用 FEM コードの ABAQUS を用いた。

円筒胴の温度 T_S は、表面から内側に板厚の 10%の位置での Mises 応力が 3S_m (=552MPa) となるように、弾性解析の結果から図 6-9 に示すように T_S を 131℃とした。

1.5S_m を降伏点 S_y とする弾完全塑性体を仮定した弾塑性解析による繰返し計算は、図 6-10 に Miller 線図と合わせてプロットしている以下の 4 ケースを対象とした。

① ケース 1-1：ベースケース
② ケース 1-2：温度(T_S)をベースケース(ケース 1-1)の 2 倍としたケース。
③ ケース 2-1：Miller 線図に合うように、平底鏡の内面に追加の内圧を加えたケース。
④ ケース 2-2：σ_P が一次応力評価の限界の S_m となるように平底鏡の内面に追加の内圧を加えたケース。

(3) 塩性ひずみ増分の判定基準に対する評価
全てのケースに対する ε^p の各サイクルでの変化を図 6-11 に、Δε^p の各サイクルでの変化を図 6-12 に示す。

ケース 1-1 は 5 サイクルで、ケース 2-1 は 9 サイクルで 10^4 の判定基準を満足した。
ケース 1-2 とケース 2-2 はサイクルが進むにつれて Δε^p は減少していくが、ケース
2:1より値は高かった。これらの2ケースについては10サイクル程度では10^{-4}の判定基準を満足していないものと考えられる。

(4) 弾性域の判定基準に対する評価

ケース1-1とケース1-2の代表的な相当塑性ひずみ分布を図6-13に示す。ここで、弾性域の境界を引張試験の降伏点の定義である0.2%塑性ひずみを用いて判定するとする。図6-13から、ケース1-1はサイクルが進んでも弾性域は残存すると考えられる。このとき、サイクルiにおける板厚内での弾性域の寸法をL_iとし、前回のサイクルからの変化量をΔL_i = L_i - L_{i-1}としてケース1-1の弾性域の変化量を求める結果を図6-14に示す。ここで、これらの寸法はコンター図から読み取った値である。図6-14より、弾性域が残存することがわかる。一方、ケース1-2は第1回目のサイクルで相当塑性ひずみ域が板厚を貫通している。

板厚断面内において弹性を保つ領域がありその寸法が減少しないことを確認するには、Mises相当応力が荷重サイクルを通じて降伏点未満である領域があること、または荷重サイクルを通じて相当塑性ひずみが発生していない領域があり、それらの寸法が減少しないことを確認すればよい。これに従うと、図6-15に示すように弾力全塑性体を仮定した場合の応力とひずみの変動に対して、応力とひずみの関係がA-BやC-D上にあれば弾性挙動を示すが、累積の相当塑性ひずみが発生しているので相当塑性ひずみ分布図では単純には判断できない。厳密には相当塑性ひずみ増分の有無で判断する必要がある。

簡単な方法として、次の方法が考えられる。弾塑性ひずみε_pが2ε_yを超えるときは塑性ひずみを生じることになるので、その比をKsとして次式で定義する。

\[Ks = \frac{\varepsilon_p}{2\varepsilon_y} \]

評価線上でのKs係数をケース1-1に対して整理した結果を図6-16に、ケース1-2に対して整理した結果を図6-17に、ケース2-2に対して整理した結果を図6-18に示す。ケース1-2及びケース2-2に対してはKs係数が1.0を下回る領域が存在したが、ケース1-2についてはKs係数が1.0を下回る領域は存在せず、弾性域は残存しない。したがって、ケース1-2は熱応力ラチェット評価を満足しないものと判断される。

6.4.3 鏡に付くノズルと円筒胴に付くノズル

(1) 解析方針

ノズルコーナ部に対する評価のモデルとして、2次元軸対称体のノズルと3次元構造のノズルを考える。2次元軸対称モデルとしては図6-19に示す鏡に付くノズルを対象とする。3次元構造のモデルとしては、鏡に付くノズルを参考に、鏡の一般部の周方向応力と円筒胴の一般部の周方向応力が等価となるように円筒胴の内径を鏡
の内径の1/2とし、図6-20に示す構造とした。シェイクダウン評価の判定基準及び検証についての考え方は基本的には6.4.2(1)と同じであり、以下のように確認した。

a. 弾性解析を実施し、Mises応力を計算する。
b. 表面から内側に板厚の10%の位置でのMises応力を3Sm'とする。
c. 設定した温度条件に対して、1.5Sm'を降伏点とする弾完全塑性体を仮定した弾塑性解析による繰返し計算を実施する。
d. 熱応力ラチェット評価の判定基準を満足するかを調べる。

(2) 解析条件
図6-19及び図6-20の解析モデルに対して、内圧は一定とし、図6-21の温度過渡条件を用いて検討する。

応力解析は汎用FEMコードのABAQUSを用いた。

内圧を17.16MPaとしたときの弾性解析結果を図6-22及び図6-23に示す。図6-22はMises応力による一次+二次応力強さ(P+Q)の内表面分布、図6-23はMises応力による二次応力+ピーク応力強さ(P+Q+F)の内表面分布を示す。また、図6-24にはこれらをノズルコーナ部の板厚で整理した図を示す。ここで、3次元モデルの角度を図6-20に示す。図6-22、図6-23及び図6-24より、2次元軸対称モデルのP+Q及びP+Q+Fの最大値は3次元モデルの最大値より若干高くなった。また、3次元モデルについては、P+Qは90°断面が若干高く、P+Q+Fは各断面での差は小さかった。

そこで、2次元軸対称モデル及び3次元モデルの板厚内のMises応力分布(図6-25及び図6-26)から、降伏点Srを以下のように設定する。

[2次元モデル]
\[S_r = 1.5S_m' = 1.5 \times 546.5 / 3 = 273 \text{ MPa} \] …………………………(6-2)

[3次元モデル]
\[S_r = 1.5S_m' = 1.5 \times 368.0 / 3 = 184 \text{ MPa} \] …………………………(6-3)

熱応力σθと内圧による応力σpとの関係をMiller線図として表し、図6-27に示す。ここで、Miller線図は単軸応力状態に対して示されており、弾性解析で得られた多軸応力状態に対しては応力強さに換算したもので置き換えた。

また、3次元モデルにおいては円筒胴の内圧による周方向の膜応力は軸方向の膜応力の2倍となることから、軸方向断面になる0°断面(図6-20参照)の方が内圧による応力が高い。そのため、3次元モデルに対する図6-26に基づく降伏点の設定に対して内圧が17.16MPa(以降、「HPケース」と略称)となるのは0°断面がMiller線図では熱応力ラチェットを生じる領域になることを示す。これは、板厚はSmが規格値(184MPa)に基づき設定したものであり、この熱応力ラチェット評価においては降伏点Srが規格値の1.5Smより低くなったためである。そこで、3次元モデルの円筒胴部
の0°断面の内圧による膜応力が2次元モデルの鏡部の膜応力と同等なるケースを想定し、3次元モデルの圧力を以下のように設定したケースも実施した（以降、「LPケース」と略称）。

$$17.16 \times (\sigma_p/S)_{2D} / (\sigma_p/S)_{3D} = 11.0 \text{ MPa} \quad (6-4)$$

なお、3次元モデルのHPケースは規格の一次一般膜応力評価を満足しないことになるが、ここでは熱応力ラチェット評価の判定基準の検討として評価を実施するものとする。

(3) 塑性ひずみ増分の判定基準の妥当性に対する評価

相当塑性ひずみ(ε_p^{ep})の各サイクルでの変化を図6-28に、相当塑性ひずみ増分($\Delta \varepsilon_p^{ep}$)の各サイクルでの変化を図6-29に示す。内圧による膜応力が高く、Miller線図でラチェットを生じる領域になった3次元モデルのHPケースでは、比較的高い塑性ひずみが生じており、相当塑性ひずみ増分も判定基準の10^{-4}を超える値となった。特に90°断面の相当塑性ひずみ増分が急激に増加している。図6-30に3次元モデルのHPケースに対する第2サイクルと第4サイクルの相当塑性ひずみ分布を示す。図6-30より、塑性ひずみがノズルコーナ部を中心に内面全体に生じていることがわかる。特に0°断面のノズルコーナ部では第2サイクルで1.2%、第4サイクルで2.1%の比較的大きな塑性ひずみが生じている。また、サイクルが進むと、塑性ひずみの領域が広がっているのがわかる。この塑性ひずみの広がりにより、90°断面は相当塑性ひずみ増分が増加傾向を示したものと考えられる。

Miller線図と同等の設定とした3次元モデルのLPケースと2次元モデルの結果は相当塑性ひずみ増分の許容値である10^{-4}を満足した。

(4) 弾性域の判定基準に対する評価結果

図6-30に基づき塑性ひずみが比較的高くなったHPケースに対する3次元モデルの0°断面に対してK_s係数を整理した結果を図6-31に示す。図6-31より、ラインIではK_s係数は全断面で1.0を超えており、弾性域は断面内に残存せず、熱応力ラチェット評価の判定基準を満足しないと判断される。

6.5 結 言

繰返し荷重に対するシェイクダウン及び熱応力ラチェットの評価について応力分類が不要な評価手法を検討した。シェイクダウン評価は、現行の一次＋二次応力に対する3Sm規定やMiller線図の考え方を踏まえ、弾性解析に基づく判定基準を策定した。その判定基準を満足しない場合同に対して、弾塑性FEM解析により熱応力ラチェット評価を生じないことを判定する基準も策定した。これらの策定した判定基準を用いて原子炉圧力容器
の代表的な構造部位を評価し、その妥当性の検証を行った。これらの検討結果は以下のとおりである。

(1) 一次＋二次応力評価の $3S_m$ 規準と整合を踏まえ、シェイクダウン評価の判定基準は、弾性 FEM 解析により得られた Mises 相当応力に対して繰返し降伏域（CYA）を表面から内側に板厚（d）の 10%位置で $3S_m$ とする基本的な考え方を設定した。また、ピーク応力の発生要因となる構造要素を分類し、CYA 判定基準を整備した。

(2) CYA 判定基準を満足しない場合は、弾完全塑性体を仮定した弾塑性 FEM 解析による繰返し解析を行い、相当塑性ひずみの増分が減少傾向にあり、かつ無視できる大きさ以下（具体的には 10^{-4} 以下）になること、あるいは弾性域が残存することを熱応力ラチェット評価の判定基準として設定した。これらの判定基準の妥当性を平底容器等の構造不連続を有するモデルに対して検証計算を実施し、その妥当性を確認した。

(3) 以上の検討結果に基づき、繰返し荷重の設計手法としては、弾性 FEM 解析結果に対して CYA 判定基準で評価する。満足しない場合は弾完全塑性体を仮定した繰返しの弾塑性 FEM 解析を行い、相当塑性ひずみの増分が減少傾向にあり、かつ無視できる大きさ以下（10^{-4} 以下）、あるいは弾性域が残存することで熱応力ラチェットが生じないことを確認することとした。

6.6 参考文献
[6-1] 朝田, 平野, 永田, 笠原,「機械学会設計・建設規格事例規格における弾塑性有限要素解析を用いたクラス 1 容器に対する強度評価手法」, 日本機械学会論文集(A編), 74巻 748号(2008-12), 論文 No.08-0541, p.1485.
[6-3] 「弾塑性解析活用設計基準検討会(EPD基準検討会: Committee on Elastic-Plastic Analysis Design Guideline)成果報告書」(社)火力原子力発電技術協会,2003年(平成15年)10月

[6-8] 動力炉・核燃料開発事業団, 解説 高速原型炉第1種機器の高温構造設計方針, PNC SN241 84-14(1984年昭和59年12月)

図 6-1 繰返し降伏域(CYA)の制限条件

図 6-2 3S_m に対する板厚内応力分布

図 6-3 Miller 線図とラチェット領域
内圧 P による軸荷重

図 6-4 ラチェット限界確認用解析モデル

図 6-5 Miller 線図と解析条件

図 6-6 円筒モデルによるラチェット限界確認結果

図 6-7 平底容器の形状

図 6-8 平底容器の解析条件

温度: T_c と熱伝導

基準との比

グループ A

グループ B

グループ C

単軸モデル

グループ A

グループ B

グループ C

単軸モデル

内圧による膜応力 σ_p/S_y と熱応力 σ_s/S_y の比較

$S_y=184$MPa

R3000

144

T_c と温度依存性
図 6-9 弾性解析による温度条件の設定

図 6-10 平底容器の解析ケース

図 6-11 相当塑性ひずみの変化

図 6-12 相当塑性ひずみ増分の変化
図 6-13 相当塑性ひずみ分布
図 6-14 ケース 1-1 に対する弾性域寸法の変化量

図 6-15 弾完全塑性体のシェイクダウン

図 6-16 ケース 1-1 に対する \(Ks \) 係数

図 6-17 ケース 1-2 に対する \(Ks \) 係数

図 6-18 ケース 2-2 に対する \(Ks \) 係数
図6-19 鏡に付くノズル
(2次元軸対称モデル)

図6-20 円筒胴に付くノズル
(3次元モデル)

図6-21 温度過渡条件

(*) 内圧:一定
図 6-28 相当塑性ひずみの変化
図 6-29 相当塑性ひずみ増分の変化
図 6-30 3次元モデル(HP ケース)の相当塑性ひずみ分布
図 6-31 3次元モデル（HP ケース）の 0°断面の第 4 サイクルの \(K_s \) 係数
7. 疲労評価及び簡易弾塑性解析に対する設計手法
7.1 緒 言
疲労評価に弾塑性 FEM 解析を適用する場合、弾塑性解析は荷重履歴の影響を受けるため、厳密には過渡条件の順番が結果に影響を及ぼす。しかしながら、疲労評価の対象とする供用状態 A 及び B の過渡条件は PWR 原子炉容器の場合は 20 種類以上あり、種々の運転のパターンが存在するためにそれらの過渡条件の順番は一意的には決められない。そのため、全ての過渡条件を対象に弾塑性 FEM 解析を実施することは現実的ではなく、現行の規格と同様に、荷重履歴の影響を受けない弾性解析に基づき応力の変動幅を求め、その応力の変動が塑性サイクルを生じる場合に対してのみ簡易弾塑性解析を用いて評価する方法が合理的である。そこで、基本的には現行の規格と同様に弾性解析による応力を用いて応力の変動幅が最大となる組合せから順に疲れ累積係数を計算し、疲労評価を行うこととする。疲れ累積係数を計算する荷重サイクルの組合せが塑性サイクルを生じる場合に簡易弾塑性解析を適用することとし、表面の応力を用いて評価する方法を検討する。ここで、簡易弾塑性解析の必要性はシェイクダウン評価で判断し、シェイクダウン評価を満足しない場合は弾塑性 FEM 解析に基づき熱応力ラチェット評価を行い、進行性変形を生じないことを確認した上で、簡易弾塑性解析を用いて疲労評価を行うこととする。

ここで、一次荷重評価、シェイクダウン評価及び熱応力ラチェット評価においても Mises 応力を用いたが、現行規格は Tresca 応力に基づいている。疲労評価においては二つの主応力の差とする Tresca 応力は正負の符号が存在するので二つの時刻点での差を取りれば疲労評価に必要な応力の変動幅を算出できる。一方、Mises 応力は常に正値なので、二つの時刻点での Mises 応力から単純には評価ができない。

本章では、Mises 応力を用いる場合の応力強さの変動幅を計算する方法を策定する。また、簡易弾塑性解析については、現行の規格と同様に弾性解析で得られた応力強さに Ke 係数を乗じて評価する手法を採用する[7,11]。ただし、その Ke 係数に対しては FEM 解析で得られた表面の応力に直接乗じることができる Ke 係数の評価式を用いることとし、応力分類が不要で精度の高い Ke 評価式を検討する[7,2,3,4]。

7.2 疲労評価に用いる応力変動幅
JSME 設計・建設規格[7,11]では Tresca 応力の変動幅の 1/2 を繰返しピーク応力強さと呼び、それを疲労評価に用いている。本検討では一次荷重評価、シェイクダウン評価及び熱応力ラチェット評価に対して Mises 応力に基づき評価を行っているので、その一貫性から疲労評価でも Mises 応力を用いることとする。

ここで、Tresca 応力は正負の符号があるので二つの時刻点での Tresca 応力の差をとれば応力強さの変動幅を求めることができるが、Mises 応力の場合は単純な差では変動幅が
求められない。ASME Sec.III[7-6]では応力強さの変動幅の計算方法は NB-3216 "Derivation of Stress Differences"に二つの手法が規定されており、一つはNB-3216.1 "Constant Principal Stress Direction"であり、もう一つはNB-3216.2 "Varying Principal Stress Direction"である。前者は、荷重サイクルの中で主応力方向が変化しないと見なし、二つの時刻点でのTresca応力の差を取ればよいとしている。後者は荷重サイクルの中で主応力方向が変化する場合の評価方法であり、二つの時刻点での各応力成分の差をとり得られた応力成分の差に対して Tresca 応力を計算すればよいとしている。ここで、主応力方向が変化しない場合は前者の方法と後者の方法は一致するので、前者の方法は単純化した方法と考えられる。これより、後者の方が汎用性があり、Mises応力を用いる場合でも二つの時刻点での応力成分の差に対して Tresca 応力を変わり Mises 応力を算出すればよい。したがって、NB-3216.2 "Varying Principal Stress Direction"の考え方を用いて Mises 応力を算出することで疲労評価に用いる応力変動幅を求めることが可能と考える。このように求めた Mises 応力に基づく変動幅を「相当応力範囲」と呼ぶこととする。

図 7.1の偏差応力空間を導入すると、上記の相当応力範囲の計算方法は偏差応力空間上の 2 点間の距離を計算していることに相当する。一連の疲労評価においては多くの過渡条件の各時刻点同士の組合せの中から最大の相当応力範囲を求める必要があり、以下に示す方法により機械的に評価することができる。

[Step 1] 各過渡条件の極値の評価
各々の過渡条件に対して、表 7-1 に示すように全ての評価時刻点の組合せに対する相当応力範囲を求める。全ての組合せに対して、最大となる相当応力範囲を抽出し、その組合せとなった二つの時刻点をその過渡の極値とする。
事例を図 7-1 に示すが、この方法により適切に極値が設定されているのがわかる。

[Step 2] ピーク応力強さの評価
全ての過渡条件の極値(時刻点)に対し、表 7-2 に示すように全ての極値の組合せに対する相当応力範囲を求める。計算された相当応力範囲に対し、最大となるものから順に疲労評価を実施していく。

7.3 簡易弾塑性解析
7.3.1 Ke 係数
JSME 設計・建設規格の PVB-3300「簡易弾塑性解析」では、一次＋二次応力強さが 3Sm 以上の場合、ピーク応力強さのサイクルにおける極大値と極小値との差(Sp)と Ke 係数から疲労評価に用いる繰返しピーク応力強さ(Sl)を次式で求める。

\[
S_{l} = \frac{K_{s} \cdot S_{p}}{2} \tag{7-1}
\]
Ke係数は当該のサイクルによる変動範囲が塑性ひずみを生じる場合に考慮される係数である。図7-2に示すように、塑性ひずみを生じるような荷重が生じれば、弾性解析で得られるひずみよりも大きなひずみを生じることになり、その弾塑性ひずみと弾性ひずみとの比率がKe係数である。

例えば図7-3に示す長さが同じで断面積のみ異なる変断面棒モデルに対して、一定量の変位を与えた場合、棒Aと棒Bとも弾性の場合は単純な力の釣り合いで両棒の伸び量は決まり、両棒の伸び量の比率は断面積の比の逆数となる。しかしながら、断面積の小さい棒Bが塑性領域に入った場合、弾性の場合に比べて棒Bの伸び量は増加し、棒Aの弾性追従により棒Bのみに塑性ひずみが発生する。棒Bの塑性ひずみの量は構造(断面積の比率や長さ)の影響を受ける。これはKe係数も同様である。

このような弾性追従の考え方を背景に、日本の高速炉規格で次式に表現されるKe評価式が取り込まれた。

\[
K_e' = \frac{\varepsilon_e + \varepsilon_p}{\varepsilon_e + \varepsilon_p'}
\]

(7-2)

ここで、図7-2参照

\[\varepsilon_e = 3S_m/E \quad \text{弾性ひずみ}\]
\[\varepsilon_p' = (S_n - 3S_m)/E \quad \text{弾塑性的に計算された塑性ひずみ}\]
\[\varepsilon_p = q \cdot \varepsilon_p' \quad \text{真の塑性ひずみ}\]
\[q \quad \text{弾性追従パラメータ}\]
\[S_n \quad \text{一次＋二次応力強さ}\]

したがって、

\[
K_e' = 1 + (q - 1)\left[1 - \frac{1}{S_n/3S_m}\right]
\]

(7-3)

高速炉規格では、種々の試験・解析の結果を包絡する値として q = 3 とした。例えば、加工硬化係数 n を想定した片持ち梁については、ASME Sec.III の加工硬化係数から低合金鋼(n = 1/0.2)の場合は q = 2.3、ステンレス鋼(n = 1/0.3)の場合は q = 1.8 となる。

一方、ASME Sec.III の Ke評価式は単純なモデルを基に設定されたものであり、従来から保守的であることが知られている。そこで、軽水炉のクラス1機器を対象に、日本の高速炉規格の Ke評価式の形を踏襲し、応力分類が不要となる Ke係数の評価手法を検討した。

7.3.2 Ke評価式の開発

(1) 検討方針

Ke評価式の開発の手順は以下のとおりである。

① 代表的な基礎モデルを実際の構造から抽出し、それらのモデルに対する荷重条件に対して弾性解析と弾塑性解析を行い、Ke係数を求める。得られたKe係数を包
絡するように Ke 評価式を設定する。
② 配管に対する荷重負荷試験データを用いて設定した Ke 評価式の妥当性を確認する。
③ 比較的 Ke 係数が厳しい代表的なノズル形状に対して設定した Ke 評価式の適用性を確認する。
ここで、告示 501 号で用いられた Ke 評価式は ASME Sec.III の評価式に加えて、
S が 3Sn 近傍では次式（以下、「A0 式」と略称）が用いられ、ASME Sec.III といずれか厳しい方の値を用いることとした。

\[
K_e = 1 + A_0 \left(\frac{S_n - S_m}{3S_m} \right)
\]

上式はピーク塑性ひずみの集中に着目した評価式であり、S が 3S と近傍ではこの式の方が支配的になるので取り入れることとする。

(2) 材料特性
材料は降伏点を 1.5Sm とする弾完全塑性体とする。ここで、上述の Ke 評価式は
S と 3S をパラメータとしているが、それは荷重が両振幅を対象としているためであり、
モデルに与える荷重が単調負荷の場合は S/1.5Sm をパラメータとして整理する。

(3) 基礎モデルに対する解析方法
原子炉容器等のクラス 1 機器の構造から構造不連続がある部位に着目して表 7-3
に示すように円筒、ノズル、サーマルスリーブ／セーフエンド、キャノピーシール、
支持スカートを抽出した。これらのモデルに対して、内圧及び熱応力を与えて弾性
FEM 解析及び弾塑性 FEM 解析を行い、次式により Ke 係数を計算する。

\[
K_e = \frac{\epsilon_{ep}}{\epsilon_{c}}
\]

ここで、

\[
\epsilon_{ep} = \frac{-\sigma_{ep}}{E} + \epsilon_{ep}
\]

\[
\epsilon_{c} = \frac{-\sigma_{c}}{E}
\]

\(-\sigma_{ep} \): 弾塑性 FEM 解析による Mises 相当応力
\(\epsilon_{ep} \): 弾塑性 FEM 解析による相当塑性ひずみ
\(-\sigma_{c} \): 弾性 FEM 解析による Mises 相当応力

ここで、熱応力は以下のように解析する。
① 設定した温度分布に対して温度分布解析及び弾性解析を行う。
② 最大の熱応力を評価し、そのときの温度分布を求める。
(3) 内圧を負荷した状態で求めた温度分布を比例的に増加させて解析モデルに与え、弾性 FEM 解析及び弾塑性 FEM 解析を行い、弾性 FEM 解析による \(S_n \) 及び \(S_p \) に対して、式(7-5)で Ke 係数を計算する。

(4) 基礎モデルに対する解析結果

a. 円筒モデル

内圧と熱応力の基本的な影響を調べるため、構造不連続のない円筒のモデルに対して、内圧のレベルが 3 ケース、熱応力のタイプが 3 ケース（直線温度分布、ステップ状温度変化、円筒の上下に温度差を与える）の合計 9 ケースについて Ke 係数を計算し、Ke 係数と \(S_n \) との関係を求めた。

(a) 直線温度分布

板厚方向に直線状の温度分布を与えた場合の Ke 係数を図 7-4 に示す。内圧が高いほど塑性ひずみは生じやすくなるため、Ke 係数も高くなった。なお、\(S_n/1.5S_m=1.0 \) 付近では若干の差が認められるが、これは \(S_n \) は Tresca 応力で整理しているのに対して Ke 係数は Mises 応力（降伏条件）で評価しているためである。ただし、その差は小さく、問題となるものではない。

(b) ステップ状温度分布

内部流体の温度変化をステップ状に変化させた場合の Ke 係数を図 7-5 に示す。ステップ状の温度変化により発生する熱応力は内表面で局所的に高くなるような分布になるため、板厚全体に与える熱曲げ応力の影響は小さく、\(S_n/1.5S_m=1.0 \) 近傍において内圧が高い方が Ke 係数が高いのは、\(S_n \) が等しいので内圧が高い方が熱応力は高く、表面の局所的な熱応力が高くなるため塑性の開始が早まることがよりる。

(c) 円筒の上下に温度差を与えたケース

円筒の上下に温度差を与え、変位の食い違いによる熱応力を与えた場合の Ke 係数を図 7-6 に示す。内圧が高いほど Ke 係数は高くなった。この荷重条件は他のモデルに比べて弾性追従の影響が出やすいモデルであり、内圧の影響が他のケースに比べて明確に現れたものと考えられる。

b. ノズルモデル

構造不連続の代表的な形状であるノズルのモデルについては、穴の補強をノズルのみに考慮したモデルと胴側のみに考慮した 2 種類を用いた。FEM モデルを図 7-7 に示す。荷重は、内圧は 17.16 MPa 一定で、温度は内部流体の冷却率を 55℃/h とした。

Ke 係数の計算結果を図 7-8 に示す。二つモデルとも板厚の厚い評価点の方が Ke 係数は高く、基本的には板厚の影響が大きくなっている。ノズルコーナ部は応力
ひずみ集中は発生するが、ピーク応力であり、Ke係数に対する影響は比較的小さくなった。また、胴側で補強したモデルのノズル側のKe係数は$S_n/1.5S_m$が大きくなるにつれて直線的に大きくなっている。これはノズルの板厚が薄く、胴側に比べてノズル側の剛性が低いため、弾性追従の影響が生じたものと考えられる。

c. サーマルスリーブ/セーフエンドモデル

管台に取り付くサーマルスリーブ/セーフエンドを対象とした。一重スリーブと二重スリーブの素材の違いに着目して、BWR及びABWRの代表モデルを用いて検討した。FEMモデルを図7-9に示す。内圧は8.62MPa一定で、温度は内部流体温度を300℃から40℃にステップ状に変化させた。

Ke係数の計算結果を図7-10に示す。内部流体による急速冷により、サーマルスリーブの付け根部にサーマルスリーブが収縮することによる曲げ変形が発生し、この熱変形応力がKe係数に対して支配的になる。一方、内圧による応力については、BWRモデル（一重スリーブ）の評価点位置では内圧による応力も影響するが、ABWR（二重スリーブ）モデルの評価点位置では内圧の影響はなく、$S_n/1.5S_m$小さい領域ではBWRモデルの方がKe係数は高くなった。これによりスリーブが収縮するため、評価点のR部に弾性変形が発生することによると、R部に導入される熱応力の局所的応力集中が発生し、円筒モデルのステップ状温度変化を与えたケース（内部に熱応力の局所的応力が発生）と類似したKe係数の傾向を示した。一方、ABWRモデルは内圧による応力の影響はなく、熱変形応力が主となり、弾性変形も影響して比較的単調的に増加するKe係数の傾向となった。

d. 支持スカートモデル

支持スカートもBWR及びABWRの代表モデルを用いて検討した。FEMモデルを図7-11に示す。内圧は8.62MPa一定で、温度はプラントの昇温（昇温）過渡を用いた。Ke係数の計算結果を図7-12に示す。両モデルとも同様の傾向を示し、プラントの昇温時と内部流体の温度上昇とともに胴側の温度も上昇する。支持スカートは熱伝導による時間差があるとともに、支持スカートが取り付いている部分は保温されていないので大気との熱伝達があることから、支持スカートは胴側に比べて温度が低い。したがって、それによる変位差のために支持スカート付け根部に比較的高い応力が発生し、また弾性変形の影響が比較的大きい構造となっている。

このような荷重が発生するために熱変形の弾性変形も高く、熱変形を除く一次＋二次応力が$3S_m$以下とする制限(S_n'制限)は、BWRモデルでは$S_n/1.5S_m \leq 1.98$、ABWRモデルでは$S_n/1.5S_m \leq 1.72$において満足するため、支持スカートのKe係数はS_m'制限を満足する範囲を対象とする。

なお、S_n'制限を満足しない場合、全断面が塑性域になるので繰返し荷重評価のシ
と熱応力ラチェット評価も満足しないので、弾塑性設計手法でも上記の範囲について対象外とすることで問題はない。

e. キャノピーシールモデル

剛性の差が比較的大きい例として、PWR 原子炉容器蓋用管台と制御棒駆動装置（CRDM）ハウジングとの間のキャノピーシールを評価の対象とした。FEM モデルを図 7-13 に示す。内圧は 17.16MPa 一定で、プラントの 100%出力への負荷上昇（1000sで 300℃→350℃）の温度過渡を用いた。

Ke 係数の計算結果を図 7-14 に示す。管台部内面は内部流体により温度が上昇するが外面は冷却空気により冷やされる。特にキャノピーシール部は板厚が薄いためフランジ部との温度差が付きやすく、フランジ部の熱膨張に対してキャノピーシール部の熱膨張は小さいので、キャノピーシール部の付け根部に比較的高い曲げ応力が発生する。また、シール部とフランジ部との剛性の差が大きく、弾性追従の影響も大きく、Ke 係数も比較的高くなった。

(5) Ke 評価式の設定

基礎モデルに対して得られた Ke 係数と Sa との関係を整理し、それらを式 (7-3) で包絡するように弾性追従パラメータ q を設定した結果、図 7-15 に示すように q =3.1 が得られた。ここで、Sa/3Sa=1.0 近傍では新 Ke 評価式と A0 式とのいずれか大きい方の値を用いることとした。また、本評価で得られた q =3.1 は高速炉規格の q =3.0 とほぼ同等の結果となり、妥当と考えられる。

(6) 配管試験データに対する設定した Ke 評価式の検証

原子力配管の耐震設計に対する民間の研究成果 [7-10, 11] を用いて新 Ke 評価式を検証した。表 7-4 に示すように、試験体要素の種類、板厚、内圧及び加振条件に着目して 11 ケースを評価の対象とした。

変位制御の実験データから得られた Ke 係数は、各試験のき裂発生点に一番近いひずみゲージで得られた値から計算した。Ke 係数は実験で得られたひずみと弾性 FEM 解析で得られたひずみとの比で求めた。評価する負荷サイクルは試験初期で挙動が安定したサイクルとした。図 7-16 に曲げ管、ティー接続手及び直管の試験データによる Ke 係数と設定した Ke 評価式 (q =3.1) を比較して示す。また、各ケースについて負荷サイクルの前半と後半の値を示した。ラチェットの影響でサイクルの前半と後半で挙動が異なるが、すべてのケースについて、試験データによる Ke 係数は Ke 評価式 (q =3.1) に比べ小さいことが確認された。
実機ノズル形状に対する解析結果

比較的 Ke 係数が厳しい代表的なノズル形状として、PWR は加圧器スプレイ管台、BWR は原子炉圧力容器の給水ノズルに対して設定した Ke 評価式の適用性を確認した。

a. PWR 加圧器スプレイ管台
解析モデルと解析条件を図 7-17、Ke 係数の計算結果を図 7-18 に示す。図 7-18 より、Ke 係数が高くなったのはセーフエンド側の評価点 1 であった。ここで、図 7-17 に示す領域 II は、実機にはサーマルスリーブが取り付いていることから熱伝達率は領域 I に比べると小さくなっており、評価点 1 に比べて評価点 2 及び評価点 3 は内部流体の温度変化の影響は小さくなる。

また、評価点 1 の Ke 係数の傾向は図 7-5 の円筒モデルのステップ状温度変化のケースとほぼ同様の結果となった。これは、与えた温度過渡がステップ状の温度変化であり、評価点 1 の部分には構造不連続は無く、周りの構造不連続の影響も小さかったためであると考えられる。

b. BWR 給水ノズル
解析モデルと解析条件を図 7-19、Ke 係数の計算結果を図 7-20 に示す。図 7-20 より、セーフエンド側の評価点 2 で Ke 係数が高くなった。評価点 1 の Ke 係数の傾向は図 7-10 の BWR サーマルスリーブ／セーフエンドモデルのケースとほぼ同様の結果となった。

(8) 表面の応力に対する Ke 評価式
上記の検討結果から、S_p に対する Ke 評価式(Ke"式)を用いればクラス 1 機器の代表的な構造不連続部に対して保守的な値が得られることが確認された。ここで、得られた結果を表面の応力強さ(S_p)で整理しなおせば、応力分類が不要で、表面の応力から直接 Ke 係数が求まる評価式が得られる。これを Ke"式と呼ぶこととし、基礎モデルで得られた Ke 係数に対して S_p で整理したものを図 7-21 に示す。Ke"式は Ke'式と同様の形式で次式で表現することとする。

\[
K_e" = 1 + (q - 1) \left(1 - \frac{1}{S_p/33_{cr}} \right) \]

ここで、弾性追従パラメータ q が塑性ひずみと全ひずみの比率に依存すると考えると次式のように表現することができる。
\[q_p = (q_1 - q_0) \left(\frac{\varepsilon_p}{\varepsilon_i} + q_0 \right) \]
\[= (q_1 - q_0) \left(\frac{S_p}{E} - \frac{3S_m}{E} + q_0 \right) \]
\[= (q_1 - q_0) \left(1 - \frac{1}{S_p / 3S_m} \right) + q_0 \]

\[q_0 \text{及び} q_1 \text{を図7-21に示すように各モデルのKe係数を包絡するように設定すると次式が得られた。} \]
\[q_0 = 1.5, q_1 = 4.0 \]

\(S_n \)に対するKe係数で、\(S_n/3S_m \)未満でKe係数が1.0を超える場合もあるが、\(S_n/3S_m \)未満ではシェイクダウンするのでKe係数は1.0とした。しかしながら、Ke”式は表面の応力が降伏した時点から1.0以上となる。特にピーク応力が発生するような部位については、従来はKe係数を1.0と扱っていた応力状態に対してもKe係数を考慮することになるので、Ke”式を適用することは保守的な評価となる。したがって、応力分類せずに表面の応力にKe”式を用いて評価すれば、保守的な評価が得られるが、許容値を満足しないような厳しい結果が得られた場合には、Ke係数を弾塑性FEM解析を用いて直接評価し、精度の高いKe係数を求めて評価すればよい。

7.4 結 言

疲労評価において使用するMises相当応力に基づく応力の変動幅(相当応力範囲)の計算方法及び簡易弾塑性解析に用いる応力分類が不要なKe評価式について検討した。これらの検討結果は以下のとおりである。

(1) 疲労評価においてもMises相当応力を評価に用いることとし、ASME Sec.IIIのNB-3216.2”Varying Principal Stress Direction”の方法を用いて応力成分の段階で差を取り、Mises相当応力を計算することで相当応力範囲を計算する。この方法を新設計手法に取り込む。

(2) Ke係数については、弾性解析の考え方で日本の中速炉規格で用いられている評価式の形を用いて、軽水炉の代表的な構造に対して弾塑性解析により直接Ke係数を求め、それらを包絡するようにKe評価式を設定した。一つは応力分類が必要な\(S_n \)に基づくKe評価式(Ke”式)であり、この評価式は既にJSME設計・建設規格に取り込まれた。もう一つは応力分類が不要な表面の\(S_p \)に基づくKe評価式(Ke”式)であり、この評価式を新設計手法に取り込む。さらに個々の構造に対して直接弾塑性解析を行い、その構造に対するKe”式のパラメータを設定する方法も新設計手法に取り込む。
7.5 参考文献

[7-1] 朝田, 平野, 永田, 笠原, 「機械学会設計・建設規格事例規格における弾塑性有限要素解析を用いたクラス 1 容器に対する強度評価手法」, 日本機械学会論文集(A編), 74巻 748号 (2008-12), 論文 No.08-0541, p.1485.

[7-4] "簡易弾塑性解析用応力割り増し係数検討会(最終報告書)", 火力原子力発電技術協会, 2000年(平成12年)6月

[7-7] 「弾塑性解析活用設計基準検討会(EPD基準検討会: Committee on Elastic-Plastic Analysis Design Guideline)成果報告書」(社)火力原子力発電技術協会, 2003年(平成15年)10月

[7-8] 動力炉・核燃料開発事業団, 解説 高速原型炉第1種機器の高温構造設計方針, PNC SN241 84-14(1984年(昭和59年)12月)

図 7-1 偏差応力空間でのプロット例

一次応力と二次応力が生じているのでそのバランスで、ひずみ量が決まる。

図 7-2 弾性追従係数 q と Ke 係数

$$Ke = (\varepsilon_e \pm \varepsilon_p)/(\varepsilon_e \pm \varepsilon_p')$$
弾性追従モデル

変断面棒モデル

\[A_A : \text{棒Aの断面積} \]
\[A_B : \text{棒Bの断面積} \]
\[E : \text{ヤング率} \]

棒が弾性と仮定した場合

\[\sigma_A = \sigma_{AE}(\text{弾性}), \sigma_B = \sigma_{BE}(\text{弾性}) \]
\[\sigma_{AE} \cdot A_A = \sigma_{BE} \cdot A_B \]
\[\sigma_{AE} = E \cdot \delta_{AE} / L \]
\[\sigma_{BE} = E \cdot \delta_{BE} / L \]
\[\delta_{AE} / \delta_{BE} = A_B / A_A \]
\[\delta_{BE} = \delta \cdot A_A / (A_A + A_B) \]
\[\delta = \delta_{BE} \cdot (1 + A_B / A_A) \]

棒Bが塑性領域（降伏）に入る場合

（弾完全塑性体と仮定）

\[\sigma_A(\text{弹性}) < \sigma_y < \sigma_B(\text{降伏}) の時 \]
\[\sigma_A = \sigma_{AE}'(\text{弹性}), \sigma_B = \sigma_{BP}(\text{降伏}) \]
\[\sigma_{AE}' \cdot A_A = \sigma_y \cdot A_B \]
\[\sigma_{AE}' = \sigma_y \cdot A_B / A_A = E \cdot \delta_{AE}' / L \]
\[\sigma_{BP} = \sigma_y \]
\[\delta_{BP} = \delta - (A_B / A_A) \cdot L \cdot (\sigma_y / E) \]
\[\delta = \delta_{BP} + (A_B / A_A) \cdot L \cdot (\sigma_y / E) \]

\[\delta = \delta_{BP} + (A_B / A_A) \cdot L \cdot (\sigma_y / E) = \delta_{BE} \cdot (1 + A_B / A_A) \]
\[\delta_{BP} = \delta_{BE} + (A_B / A_A) \cdot \left(\delta_{BE} - L \cdot (\sigma_y / E) \right) \]

ここで、\[\delta_{BE} = L \cdot (\sigma_{BE} / E) > L \cdot (\sigma_y / E) \]

\[\therefore \delta_{BP} > \delta_{BE} \]

（棒Aの弹性追従により棒Bの変形量が弹性の場合に比べて大きくなる。}

図 7-3 弾性追従モデル（例）
図 7-4 円筒モデルの直線温度分布のケース

図 7-5 円筒モデルのステップ状温度変化のケース

図 7-6 円筒モデルの円筒の上下の温度差を付与したケース
図 7-7 ノズルモデルの FEM モデル

図 7-8 ノズルモデルの Ke 係数
(1) BWR モデル(一重スリーブ)

(2) ABWR モデル(二重スリーブ)

図 7-9 サーマルスリーブ/セーフエンドモデルの FEM モデル

図 7-10 サーマルスリーブ/セーフエンドモデルの Ke 係数

図 7-11 支持スカートモデルの FEM モデル

図 7-12 支持スカートモデルの Ke 係数
図 7-13 キャノピーシールモデルの FEM モデル

図 7-14 キャノピーシールモデルの Ke 係数

図 7-15 S_n に対する Ke 評価式
図 7-16 配管の試験データによる Ke 係数と Ke'式との比較
図 7-17 PWR 加圧器スプレイライン管台モデル

<table>
<thead>
<tr>
<th>熱伝達率</th>
<th>温度差</th>
<th>内圧</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.5 kW/m²℃</td>
<td>345℃</td>
</tr>
<tr>
<td>II</td>
<td>1.0 kW/m²℃(*)</td>
<td>0℃</td>
</tr>
<tr>
<td>III</td>
<td>2.1 kW/m²℃</td>
<td>345</td>
</tr>
</tbody>
</table>

図 7-18 PWR 加圧器スプレイライン管台モデルの Ke 係数と Ke 評価式との比較
表 7-19

<table>
<thead>
<tr>
<th>熱伝達率</th>
<th>温度</th>
<th>内圧</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>12.8 kW/m²℃</td>
<td>289℃</td>
</tr>
<tr>
<td>II</td>
<td>5.79 kW/m²℃</td>
<td>289℃</td>
</tr>
</tbody>
</table>

図 7-19 BWR 原子炉圧力容器給水管台モデル

図 7-20 BWR 原子炉圧力容器給水管台モデルの Ke 係数と Ke 評価式との比較
図 7-21 S_p に対する Ke 評価式
<table>
<thead>
<tr>
<th>過渡 A</th>
<th>10秒</th>
<th>20秒</th>
<th>...</th>
<th>500秒</th>
<th>600秒</th>
<th>1000秒</th>
</tr>
</thead>
<tbody>
<tr>
<td>10秒</td>
<td></td>
<td>50</td>
<td>...</td>
<td>90</td>
<td>150</td>
<td>120</td>
</tr>
<tr>
<td>20秒</td>
<td></td>
<td></td>
<td>...</td>
<td>140</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>500秒</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>600秒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1000秒</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(注) 表中の値は相当応力範囲であり、例えば20秒の時点と600秒の時点の各応力成分に対して差をとり、得られた各応力成分の差を用いて相当応力範囲を計算する。

<table>
<thead>
<tr>
<th>過渡 A</th>
<th>過渡 B</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20秒</td>
<td>200</td>
<td>140</td>
</tr>
<tr>
<td>600秒</td>
<td>...</td>
<td>220</td>
</tr>
<tr>
<td>100秒</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1000秒</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

(注) 表中の値は相当応力範囲であり、例えば過渡 Aの20秒の時点と過渡 Bの1000秒の時点の各応力成分に対して差をとり、得られた各応力成分の差を用いて相当応力範囲を計算する。最大となった応力強さSP1から順に疲労評価を実施していく。
表 7-3 基礎モデルの解析モデル及び条件

<table>
<thead>
<tr>
<th>モデル</th>
<th>モデル形状</th>
<th>荷重条件</th>
<th>内圧</th>
<th>温度過渡</th>
</tr>
</thead>
</table>
| 円筒モデル | \(R = 370 \text{mm} \) \\
| | \(t = 61 \text{mm} \) \\
| | 材料: 316 ステンレス鋼 | | | 板厚内線形温度分布 | |
| | | | | \(P_m = 0.75 \text{Sm} \) |
| | | | | \(P_m = 0.5 \text{Sm} \) |
| | 合計：3×3=9 ケース | | | | |
| ノズルモデル | \(R_n = 370 \text{mm} \) \\
| | \(R_v = 4350 \text{mm} \) \\
| | 材料: SFVQ1A 鋼 | | 内圧 =17.16 MPa (一定) |
| | \(t_n = 305 \text{mm}, t_v = 213 \text{mm} \) \\
| | \(t_n = 37 \text{mm}, t_v = 423 \text{mm} \) \\
| | 冷却率 = 55°C/Hour (350°C→20°C) | | | | |
| サーマルスリーブ/セーフエンドモデル | \(R_n = 140 \text{mm} \) \\
| | サーマルスリーブ | | 内圧 =8.62 MPa (一定) | | |
| | → 316 ステンレス鋼 | | 温度過渡 = 300°C→40°Cのステップ変化 |
| | セーフエンド | | | | |
| | → 316 ステンレス鋼 | | | | |
| | /ノズル | | | | |
| | → SFVC2B 鋼 | | | | |
| 支持スカートモデル | \(R_v = 3500 \text{mm} \) \\
| | \(t_v = 170 \text{mm} \) \\
| | \(t_s = 100 \) \\
| | 材料: SFVQ1A 鋼 | | 内圧 =8.62 MPa (一定) |
| | | | 温度過渡=プラント起動・過渡 |
| キャノピーシールモデル | \(R = 35 \text{mm} \) \\
| | \(t = 15 \text{mm} \) \\
| | 材料: 316 ステンレス鋼 | | 内圧 =17.16 MPa (一定) |
| | | | 温度過渡=負荷上昇 |

- 120 -
表 7-4 配管試験データ検討ケース

[機械試験（静的試験）：変位制御]

<table>
<thead>
<tr>
<th>ケース</th>
<th>要素タイプ</th>
<th>材質</th>
<th>肉厚</th>
<th>内圧</th>
<th>荷重成分</th>
<th>着眼点</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>曲げ管</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td>曲げ管</td>
<td>曲げ管ベースデータ</td>
</tr>
<tr>
<td>2</td>
<td>曲げ管</td>
<td>ステンレス</td>
<td>sch40</td>
<td>Sm</td>
<td></td>
<td>材質依存性</td>
</tr>
<tr>
<td>3</td>
<td>曲げ管</td>
<td>炭素鋼</td>
<td>sch160</td>
<td>Sm/2</td>
<td></td>
<td>肉厚依存性</td>
</tr>
<tr>
<td>4</td>
<td>曲げ管</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm/2</td>
<td></td>
<td>内圧依存性</td>
</tr>
<tr>
<td>5</td>
<td>ティ</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td></td>
<td>ティベースデータ</td>
</tr>
<tr>
<td>6</td>
<td>異径ティ</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td></td>
<td>分岐側管径依存性</td>
</tr>
<tr>
<td>7</td>
<td>ティ</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td></td>
<td>加振方向、荷重成分依存性</td>
</tr>
<tr>
<td>8</td>
<td>直管</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td></td>
<td>直管ベースデータ</td>
</tr>
</tbody>
</table>

[動的加振試験]

<table>
<thead>
<tr>
<th>ケース</th>
<th>要素タイプ</th>
<th>材質</th>
<th>肉厚</th>
<th>内圧</th>
<th>荷重成分</th>
<th>着眼点</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>曲げ管</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td>曲げ管</td>
<td>曲げ管ベースデータ</td>
</tr>
<tr>
<td>10</td>
<td>ティ</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td></td>
<td>ティベースデータ</td>
</tr>
<tr>
<td>11</td>
<td>直管</td>
<td>炭素鋼</td>
<td>sch40</td>
<td>Sm</td>
<td></td>
<td>直管ベースデータ</td>
</tr>
</tbody>
</table>
8. 弾塑性 FEM 解析を用いた原子炉圧力容器設計手法の体系化

8.1 緒 言

弾塑性解析を用いた設計手法を JSME 設計・建設規格[8-1]に取り込むに際して、その設計手法及び許容基準の体系化を検討する。許容基準を設定する必要がある供用状態は、「設計条件」、「供用状態 A」、「供用状態 B」、「供用状態 C」、「供用状態 D」及び「試験状態」である。一次応力評価は、設計条件が供用状態 A 及び B の内圧及び機械的荷重を包絡する最高使用圧力及び設計機械的荷重を用いて評価するために供用状態 A 及び B に対して不要であり、規格では設計条件、供用状態 C、供用状態 D 及び試験状態に対して要求している。一次+二次応力評価及び疲労評価は、繰返し生じる荷重が対象なので、供用状態 A 及び供用状態 B における過渡事象が対象となり、他の供用状態に対しては不要である。

本章では、弾塑性 FEM 解析を用いた原子炉圧力容器の設計手法を体系化する[8-2]。JSME 設計・建設規格を対象とするので、許容値の考え方としては JSME 設計・建設規格と整合を取り、一次荷重に対する評価は一次応力評価の許容値体系と対応させる。繰返し荷重に対する評価（シェイクダウン評価及び熱応力ラチェット評価）は一次+二次応力評価に対応させるものとし、疲労評価も含めて策定する。

8.2 一次荷重に対する許容基準

一次応力評価の対象となる供用状態は、設計条件、供用状態 C、供用状態 D 及び試験状態である。ASME Sec.III における弾性解析、極限解析及び Plastic Analysis（注：ASME Sec.III では材料の塑性挙動を考慮する解析を弾塑性解析ではなく "Plastic Analysis" と呼んでおり、ASME Sec.III に対してはこの用語を使用する）に対する各供用状態における許容基準を表 8-1 に示す。表 8-1 より、ASME Sec.III の許容値は各解析方法の間で必ずしも整合が取られておらず、以下のように考えられる。

- 設計条件については、極限解析で降伏点に 1.5Sm を用いて得られた崩壊荷重を 2/3 倍して許容荷重を求める方法は、5.5 節にて述べたように非安全側になる場合があり、降伏点を Sm とする極限解析とするべきである。また、極限解析及び Plastic Analasis に Pm 評価で必要板厚の規定があるが、必要板厚を満足しない部分が一部にあってもその部分に発生する応力は局部応力になり、極限解析あるいは Plastic Analysis で評価すればよいので、Pm 評価の規定は必要ではないと考えられる。
- 極限解析及び Plastic Analysis に対する許容基準が不明確な部分がある。
- 弾性解析の許容値と極限解析及び Plastic Analysis に対する許容基準との考え方には必ずしも整合性がない。
- Plastic Analysis に対して実機の応力一ひずみ関係を適用してもよいとなっている。
が、材料製造は通常は設計完了後になるので、設計段階では一般的には取得されていない。

以上を踏まえて許容基準を以下のように考え、表8-2に一次荷重に対する許容基準を整理した結果を示す。

- 設計段階で実機の応力-ひずみ関係は一般的には取得されておらず、JSME 設計・建設規格で取り込むとするなら各材料に対して適用できる応力-ひずみ関係を整備する必要がある。それについては将来的な高度化の案件とし、今回の検討においては Plastic Analysis を規定に取り込まないこととする。なお、実機の応力-ひずみ関係を用いて評価が必要となる場合としては、例えばプラントの供用中に何らかの損傷で当該部の板厚が大きく減少して(例えば、内部流体による減肉)、設計規格の許容値を満足しないような場合が考えられる。そのような場合は、JSME 規格としての維持規格で取り扱うべき範疇と考えられる。JSME 維持規格では、オーステナイト系ステンレス鋼の欠陥(き裂)評価に塑性崩壊の評価手法が規定されている。その手法では、塑性崩壊評価に用いる材料の流動応力に実測値に基づく降伏点と引張強さの平均値を使用することができる(それがない場合は 2.7S_m)。今後、応力-ひずみ曲線を使用した評価の必要性が出てきた場合、維持規格における考え方を踏まえて整合性の有る規定とすべきと考えられる。

- 弾塑性解析による手法としては極限解析のみを採用することとし、極限解析に用いる完全塑性体の降伏点を JSME 設計・建設規格の一次応力評価の各供用状態に対する許容値とする。SQV2A(低合金鋼)を例に矩形梁の究極強さと各供用状態の許容応力の関係を図8-1に示す。これにより許容基準を設定することで、各許容荷重は究極強さ(これ以上荷重が加わると破断する限界)に対して各々適切に裕度を有しており、供用状態と許容荷重の裕度が整合性のある許容基準とすることができる。

- 極限解析による崩壊荷重は、完璧塑性体を仮定した弾塑性 FEM 解析を行い、解の収束性を確認しつつ必要な崩壊荷重の精度まで荷重を増加していき求めた荷重を崩壊荷重とする。この方法を「下界漸近法」と呼ぶこととする(図8-2)。また、従来の二倍勾配法も保守側の崩壊荷重を与え、また計算時間も短縮化されるので、採用する。

8.3 シェイクダウン評価

6.2節での検討結果を踏まえて、以下のとおり評価方法を設定する。
(1) 相当応力範囲(S_{max})の分布図の作成

① 供用状態 A および供用状態 B における各荷重サイクルの組合せに対して、各要素毎に相当応力範囲を計算し、各点で最大となる相当応力範囲(S_{max})を求め、その分布図を作成する。ここで、相当応力範囲は 7.2 節に示す NB-3216.2 "Varying Principal Stress Direction"の考え方により計算した Mises 応力である。

② Mises 相当応力が $3S_m$ となるラインおよびその前後の応力分布状態を踏まえ、図 8-3 に示すように以下の方法で評価線を設定する。

a）$3S_m$ となる相当応力の分布ラインに垂直な線を複数引く
b）垂線で区切られる $3S_m$ ライン前後の S_{max} の分布ライン間の距離（例えば $3S_m$ と $2.7S_m$ との間の距離）を計算し、この距離が最大となる垂線を評価線とする。

③ 評価線上での板厚 t' と相当応力範囲が $3S_m$ を超える繰返し降伏域長さ L を求める。

④ L の t' に対する比率を計算し、その比率が最大となる荷重の組合せを求め、それが 10%以下であることを確認する。なお、応力集中部等が複数あり、評価対象箇所が複数存在する場合、相当応力範囲の分布中で L の t' に対する比率が最大となる評価線について評価を実施する。

(2) 求められた相当応力範囲の分布から得られた評価線に対して、図 8-4 の構造の分類に対して次の a.、b. または c. の規定を満足すること。ここで、S_m はその二つの荷重サイクルの最高温度と最低温度の平均値以上の温度における値を用いる。

a. 構造または材料の不連続部から離れた一様な板厚 t の部分において、評価線上の板厚に対して評価線上の S_{max} が $3S_m$ を超える範囲は片側あるいは両側の表面から内側に各々板厚の 10%を超えて広がっていないこと。ただし、P_{m} が 0.75S_m を超える場合においては、評価線上の板厚に対して評価線上の S_{max} が $6S_m - 4P_{\text{m}}$ を超える範囲は表面から内側に板厚の 10%を超えて広がっていないこと。板厚中央位置での半径 r に対して、構造または材料の不連続部から \sqrt{r} の範囲は b. または c. の各不連続部の範囲に含めてよい。ここで、P_{m} は一次一般膜応力の成分を用いて求めた Mises 相当応力をいう。

b. 材料の不連続部において、評価線上の板厚に対して評価線上の S_{max} が $3S_m$ を超える範囲において板厚の 10%を超えて広がっていないこと。このとき、クラッドは評価対象から除く。

c. 構造の不連続部において、評価線上の板厚に対して評価線上の S_{max} が $3S_m$ を超える範囲は表面から内側に板厚の 10%を超えて広がっていないこと。

8.4 熱応力ラチェット評価

8.3 節のシェイクダウン評価を満足しない場合、供用状態 A および供用状態 B における繰返し降伏に対して (1) または (2) の規定のいずれかを満足すること。
(1) 相当塑性ひずみに対する評価
a. シェイクダウン評価を満足しない分布を求めた二つの事象を用いて熱応力ラチェット評価用の荷重サイクルを設定する。また、熱応力ラチェット評価においては内圧および機械的荷重はを求めた二つの事象中の最大の値が常に生じているものとする。
b. 材料の降伏点をとする弾完全塑性体とし、設定した荷重サイクルを繰返し与えて材料物性値の温度依存性を考慮した弾塑性解析を実施する。
c. 各荷重サイクル終了時点における相当塑性ひずみを求めめる。
d. 各荷重サイクル終了時点において、ひずみ増加が進行性を示さないこと。ここで、ひずみ増加が進行性を示さないことの判定は、その前の荷重サイクル終了時点からの相当塑性ひずみの増分が荷重の繰返しに応じて減少傾向であり、その値が以下となることを確認する。

(2) 弾性域の寸法に対する評価
a. シェイクダウン評価を満足しない分布を求めた二つの事象を用いて熱応力ラチェット評価用の荷重サイクルを設定する。また、熱応力ラチェット評価においては内圧および機械的荷重はを求めた二つの事象中の最大の値が常に生じているものとする。
b. 材料の降伏点をとする弾完全塑性体とし、設定した荷重サイクルを繰返し与えて材料物性値の温度依存性を考慮した弾塑性解析を実施する。
c. 最後の荷重サイクルを通じて弾性の挙動を示す領域が評価線上で残存しており、その前の荷重サイクルに対してその評価線上の弾性域の寸法が減少しないこと。ここで、板厚断面内において弾性を保つ領域がありその寸法が減少しないことを確認するには、相当応力分布を作図して相当応力が荷重サイクルを通じて降伏点未満である領域があること、または相当塑性ひずみ分布を作図して相当塑性ひずみ増分が発生していない領域があり、それらの寸法が減少しないことを確認すればよさ—。

8.5 疲労評価

疲労評価はシェイクダウン評価あるいは熱応力ラチェット評価を満足することが前提となる。シェイクダウンせず、熱応力ラチェットを生じる場合は、荷重条件の見直し、構造の見直し等が必要となる。

疲労評価は供用状態Aおよび供用状態Bにおける繰返し荷重に対して以下の手順で実施する。
ピーク相当応力範囲の算出

供用状態Aおよび供用状態Bに対して、以下の手順で材料物性値の温度依存性を考慮した弾性解析によりピーク相当応力範囲を求めること。ここで、試験状態で生じる応力サイクルが10回を超える場合は、当該応力サイクル全回数を疲労評価に考慮すること。

a. 各荷重サイクルの組合せに対して表面における最大の相当応力範囲(ピーク相当応力範囲、S_p)を求める。
b. 各組合せに対してその最大の値から順に、S_{p1}、S_{p2}、・・・、S_{pi}、・・・、S_{pn}とする。また、S_{pi}の発生回数をN_iとする。

シェイクダウンする場合

疲労評価は以下で実施すること。
a. (1)項で得られたS_{pi}の1/2をS_{alti}とする。
b. S_{alti}を繰返しピーク応力強さとみなして設計疲労線図より、許容繰返し回数N_aを求める。
c. 疲労累積係数U_fは、次の規定を満足すること。

$$U_f = \sum \frac{N_a}{N_i} \leq 1.0 \quad \text{(8-2)}$$

シェイクダウンはしないが熱応力ラチェットは生じない場合

シェイクダウンはしないが熱応力ラチェットは生じない場合は簡易弾塑性解析を適用する。このとき、その材料については最小引張強さに対する最小降伏点の比が0.8倍以下であること及び低合金鋼、マルテンサイト系ステンレス鋼および炭素鋼は370℃、オーステナイト系ステンレス鋼および高ニッケル合金は430℃を超えないこととする。これらはASME Sec.III及び現行のJSME設計・建設規格でも規定されているものであり、前者の規定は、Mansonの法則(例えば[8-4]参照)によれば、「引張強さと0.2%耐力の比が1.4以上(降伏比は約0.7以下)のときは繰返しひずみ硬化が生じ、1.2以下(降伏比は約0.8以上)のときは軟化が生じる。この中間での予測は難しいが、概ね安定している」とされる。上記の法則により、降伏比が0.8以上になると材料はひずみ軟化を生じる可能性があることから、材料のひずみ軟化の効果を防止するためにこの条件を採用する。また、後の温度条件はクリープ領域を対象外としているので採用する。以上の条件の下で、疲労累積係数U_fを計算する。

(1)項で得られたS_{pi}を用いて以下に示すa、bまたはcの方法でS_{alti}を算出し、S_{alti}を繰返しピーク応力強さとみなして設計疲労線図より許容繰返し回数N_aを求める。疲労累積係数U_fが次の規定を満足すること。
\[U_f = \sum_{i=1}^{k} \frac{N_i(i)}{N_m(i)} \leq 1.0 \quad \text{... (8-3)} \]

a. \(i \)番目の荷重サイクルの組合せがシェイクダウンする場合、\(S_{al,i} \)は次の計算式により計算した値とする。

\[S_{al,i} = \frac{S_{p,i}}{2} \quad \text{... (8-4)} \]

b. \(i \)番目の荷重サイクルの組合せがシェイクダウンしないが、熱応力ラチェットは生じない場合、\(S_{al,i} \)は次の計算式により計算した値を用いてもよい。

\[S_{al,i} = K''_{e} \cdot \frac{S_{p,i}}{2} \quad \text{... (8-5)} \]

\(K''_{e} \)：次の計算式より計算した値

\[K''_{e} = 1 + (q_p - 1) \left(1 - \frac{3S_m}{S_{p,i}} \right) \quad \text{... (8-6)} \]

ここで、

\[q_p = (q_1 - q_0) \left(1 - \frac{3S_m}{S_{p,i}} \right) + q_0 \quad \text{... (8-7)} \]

\[q_0 = 1.5, \quad q_1 = 4.0 \quad \text{... (8-8)} \]

c. b項の\(Ke'' \)式は\(Ke \)検討会で開発されたものであり、保守的な評価式となっている。一方、現行のJSME設計・建設規格の簡易弾塑性解析においても、\(Ke \)係数は当該の構造に対して直接求めてよいこととしており、妥当な考え方であるので本評価方法でも取り込むこととする。そこで、\(Ke'' \)式を設定したと同じ方法を用いることとし、当該の荷重サイクルに対して1.5\(S_m \)を弾完全塑性体を仮定した弾塑性解析により計算したときのひずみ範囲\(\varepsilon_{ep} \)と弾性解析により計算したときのひずみ範囲\(\varepsilon_{e} \)を用いて次式で計算した弾性追従パラメータ\(q_p \)もよいこととする。

\[q_p = 1 + \frac{\varepsilon_{ep} - 1}{1 - \frac{3S_m}{S_{p,i}}} \quad \text{... (8-9)} \]

ここで、

\(\varepsilon_{ep} : S_{p,i} \)を求めた荷重サイクルに対して、1.5\(S_m \)を降伏点とする弾完全塑性体を仮定した弾塑性解析により計算したときのひずみ範囲であり、次の計算式により求めた値。

\[\varepsilon_{ep} = \frac{\sigma}{E} + \varepsilon^{p} \quad \text{... (8-10)} \]
σ : 弾塑性解析による Mises 相当応力範囲 (MPa)
σp : 弾塑性解析による Mises 相当塑性ひずみ範囲
εε : Sε を求めた荷重サイクルに対して、弾性解析を実施し、次の計算式によ
り求めた値。なお、解析に使用する荷重は εε の計算に用いたものと同じ
荷重であること。

\[\frac{\varepsilon_e}{E} = \frac{\sigma^*}{E} \] (8-11)

σ* : 弾性解析による Mises 相当応力範囲 (MPa)

8.6 結 言
新設計手法は JSME 設計・建設規格を対象とするので、許容値の考え方としては JSME
設計・建設規格と整合を取り、一次荷重に対する評価は一次応力評価の許容値体系と対応
させた。繰返し荷重に対する評価(シェイクダウン評価及び熱応力ラチェット評価)は一次
＋二次応力評価に対応させ、疲労評価も含めて策定した。以下により、弾塑性解析を用
いた原子炉圧力容器の設計手法を体系化した。この体系化した設計手法が EPD 事例規格
[8-5] に取り込まれた。

8.7 参考文献
[8-2] 朝田, 平野, 永田, 笠原, 「機械学会設計・建設規格事例規格における弾塑性有限要素解析
を用いたクラス 1 容器に対する強度評価手法」, 日本機械学会論文集(A 編), 74 巻 748
号(2008-12), 論文 No.08-0541, p.1485.
[8-3] 日本機械学会 発電用原子力設備規格 維持規格, JSME S NA1-2004, 日本機械学会,
2004.
[8-5] 日本機械学会, 事例規格「弾塑性有限要素解析を用いたクラス 1 容器に対する強度評
図8-1 矩形梁の究極強さおよび各供用状態の許容応力（SQV2A（低合金鋼）の例）

図8-2 極限解析に対する崩壊荷重
図8-3 S_{max} 分布と評価線の設定例

図8-4 シェイクダウン評価の構造の分類
表8-1 ASME Sec.III の一次応力評価に対する許容基準

<table>
<thead>
<tr>
<th>供用状態</th>
<th>解析方法</th>
<th>P_m</th>
<th>$P_{L, L+P_b}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計条件</td>
<td>弾性解析</td>
<td>S_m</td>
<td>1.5S_m</td>
</tr>
<tr>
<td></td>
<td>極限解析</td>
<td>必要板厚</td>
<td>2/3・C_L(降伏点: 1.5S_m)</td>
</tr>
<tr>
<td></td>
<td>Plastic Analysis</td>
<td>必要板厚</td>
<td>2/3・C_P(実際の材料特性)</td>
</tr>
<tr>
<td>供用状態 C</td>
<td>弾性解析</td>
<td>Max[1.2S_m, S_y]</td>
<td>1.5P_m</td>
</tr>
<tr>
<td></td>
<td>極限解析</td>
<td>Max[1.2S_m, S_y]</td>
<td>0.8・C_L(降伏点: 1.5S_m)</td>
</tr>
<tr>
<td></td>
<td>塑性解析</td>
<td>Max[1.2S_m, S_y]</td>
<td>規定なし</td>
</tr>
<tr>
<td>供用状態 D</td>
<td>弾性解析</td>
<td>0.7S_u(フェライト鋼)</td>
<td>1.5P_m</td>
</tr>
<tr>
<td></td>
<td>極限解析</td>
<td>Min2.4S_m,0.7S_u</td>
<td>0.9・C_L(降伏点: 2.3S_m or 0.7S_u)</td>
</tr>
<tr>
<td></td>
<td>Plastic Analysis</td>
<td>不明確</td>
<td>0.9S_u/0.9C_P/0.7P_b</td>
</tr>
<tr>
<td>試験状態</td>
<td>弾性解析</td>
<td>0.9S_y</td>
<td>1.35S_y : $P_m \leq 0.67S_y$</td>
</tr>
<tr>
<td></td>
<td>極限解析</td>
<td>規定なし</td>
<td>2.15S_y−1.2P_m : $P_m > 0.67S_y$</td>
</tr>
<tr>
<td></td>
<td>Plastic Analysis</td>
<td>規定なし</td>
<td>規定なし</td>
</tr>
</tbody>
</table>

(注) C_L：極限解析による崩壊荷重
C_P: 弾塑性解析による崩壊荷重
P_b: 塑性不安定荷重(加工硬化を考慮した弾塑性解析か実験により求めたもの)
表 8-2 一次荷重に対する許容基準

<table>
<thead>
<tr>
<th>供用状態</th>
<th>解析方法</th>
<th>評価に用いる荷重、応力</th>
<th>弾性代償法に対する許容値</th>
</tr>
</thead>
<tbody>
<tr>
<td>設計条件</td>
<td>弾完全塑性体を仮定した弾塑性解析</td>
<td>下界漸近法あるいは二倍勾配法による崩壊荷重</td>
<td>S_m</td>
</tr>
<tr>
<td>弾性代償法</td>
<td>弾性代償法解析による平衡応力の最小値 σ_{eqb}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>供用状態 C</td>
<td>弾完全塑性体を仮定した弾塑性解析</td>
<td>下界漸近法あるいは二倍勾配法による崩壊荷重</td>
<td>オーステナイト系ステンレス鋼及び高ニッケル合金鋼</td>
</tr>
<tr>
<td>弾性代償法</td>
<td>弾性代償法解析による平衡応力の最小値 σ_{eqb}</td>
<td></td>
<td>$1.2S_m$</td>
</tr>
<tr>
<td>供用状態 D</td>
<td>弾完全塑性体を仮定した弾塑性解析</td>
<td>下界漸近法あるいは二倍勾配法による崩壊荷重</td>
<td>オーステナイト系ステンレス鋼及び高ニッケル合金鋼</td>
</tr>
<tr>
<td>弾性代償法</td>
<td>弾性代償法解析による平衡応力の最小値 σ_{eqb}</td>
<td></td>
<td>$\min[2.4S_m, (2/3)S_y]$</td>
</tr>
<tr>
<td>試験状態</td>
<td>弾完全塑性体を仮定した弾塑性解析</td>
<td>下界漸近法あるいは二倍勾配法による崩壊荷重</td>
<td>オーステナイト系ステンレス鋼及び高ニッケル合金鋼</td>
</tr>
<tr>
<td>弾性代償法</td>
<td>弾性代償法解析による平衡応力の最小値 σ_{eqb}</td>
<td></td>
<td>$(2/3)S_m$</td>
</tr>
</tbody>
</table>

S_m は設計条件における許容値で、S_y は試験状態における許容値を表す。
9. 結 論

本研究では、軽水炉プラントの原子炉容器の構造設計に対して弾塑性解析に基づく設計手法を策定することを目的とし、塑性崩壊、シェイクダウン、熱応力ラチェット及び疲労評価に対して弾塑性解析を用いた場合の設計手法を検討し、その体系化を行った。

第1章「緒論」では、弾塑性解析を用いた設計手法の国内外の動向及び国内での開発の経緯をまとめ、それらを踏まえて本研究の目的と本論文の構成について述べた。

第2章「原子炉圧力容器に対する設計規格」では、原子炉圧力容器設計に適用されるDesign by Analysisの考え方について述べ、破壊様式と破壊防止評価の考え方及びクラス1容器に対する応力評価の考え方についてまとめた。

第3章「弾塑性理論と設計に用いる弾塑性解析」では、弾塑性理論（J2流れ理論とJ2変形理論）が平面ひずみブロックの変形に対して与える影響を調べ、圧力容器の弾塑性設計に用いる弾塑性解析について検討した。その結果、塑性理論による影響については、ひずみ速度感度指数が大きくなるとJ2変形理論の構成式において応力速度の降伏曲面の接線方向への寄与する項が小さくなるため、J2流れ理論に近くなり、塑性理論の違いの影響が小さくなった。また、最高荷重については、塑性理論の違いによる影響は見られなかった。これは最高荷重までは変形がほぼ一定であり、応力速度の降伏曲面の接線方向成分の影響が表れないと考えられる。圧力容器の設計では材料の応力ひずみ関係は最高荷重点までを対象としており、J2流れ理論を用いている市販のFEMコードを使用することで問題はないことがわかった。また、弾完全塑性体及び微小変形有限要素を用いて弾塑性FEM解析をすることで、保守的な解が得られるものと考えられる。以上から、圧力容器設計に用いる弾塑性FEM解析は、J2流れ理論を用いた弾完全塑性体を仮定し、微小変形有限要素を用いて弾塑性FEM解析を行うこととした。

第4章「原子炉圧力容器の古典的設計手法とその課題」については、弾性FEM解析に従来の応力分類を適用する場合の課題を抽出した。具体的には、弾性FEM解析に基づく一次応力評価に対して、皿型鏡モデルを対象に、応力分類により評価した場合と弾塑性解析を用いた極限解析により崩壊荷重を評価する場合について検討した。また、PWR原子炉容器蓋用管台を例として、極限解析を用いて一次応力評価の応力分類の解釈を検討した。さらに、一次+二次応力評価及び疲労評価（簡易弾塑性解析）に対するFEM解析結果の適用性についても検討した。その結果、FEM解析を適用することにより得られた精度の高い応力分布に対して、単純な線形化処理により適応及び曲げ応力を求めることは可能であり、一次応力、二次応力及びピーク応力に応力分類はできるが、静定解法に基づく従来の応力分類による評価方法とは必ずしも整合しないところがあることがわかった。一次応力評価に対する応力分類と極限解析について、皿型鏡板を対象に評価した結果、弾性FEM解析結果を応力分類した結果を用いると、ナックル部周りに発生する応力に二次応力が含まれたため、単純に評価すると保守的な評価になることがわかった。それに対して、極限解析により評価することで妥当な結果が得られることがわかった。
た。ここで、極限解析による崩壊荷重としては、二倍勾配法により求める方法と解析的
な真の崩壊荷重の二つの方法が考えられ、二倍勾配法は保守的であるが、評価点により
崩壊荷重が異なる場合があるので、その使い方には注意が必要であることがわかった。
解の収束性を確認しつつ必要な崩壊荷重の精度まで荷重を増加していき求める解析的な
真の崩壊荷重ではそのようなことはなく、複雑な構造を評価するにはより適切と考えられ
た。応力分類の解釈が難しい場合に、極限解析を用いて評価することで適切な応力分
類が行える場合があり、PWR 原子炉容器蓋用管台に対して適用した結果、構造不連続部
の踏応力が \(P_t \) とする必要はなく、二次応力に分類してよいことがわかった。一次＋二次
応力評価は当該部の挙動が弹性域にあるか否かの判断(塑性域にあれば疲労評価で \(K_e \)
係数を考慮)と熱応力ラチェットの防止が目的と考えられる。現行の応力分類による評価方
法及び Miller の評価手法では 3 次元形状の複雑な構造に対しては必ずしも適切に評価で
きるとはいえないので、応力分類を行わず、弾塑性 FEM 解析を用いて評価するのが有効
であることがわかった。また、疲労評価においても、弾塑性解析により直接 \(K_e \) 係数を計
算する方法が有効であったことがわかった。以上から、圧力容器設計に対して、応力分類
を行わずに、弾塑性 FEM 解析を活用した設計手法を開発することが必要であり、以降に具
体的に検討した。

第 5 章「一次荷重に対する設計手法」については、一次応力評価に代わり極限解析に
よる方法を採用するために、ASME B&PV Code における極限解析の考え方に基づき、
一次荷重に対する極限解析の評価方法を検討した。ASME B&PV Code における極限解
析の考え方を調べた結果、現行の ASME B&PV Code で用いられている二倍勾配法は種々
の評価方法があった中で、最終的に選ばれた手法であり、実験により評価する場合への
必要性のために規定されたことがわかった。ただし、現状のコンピュータであれば、3 次
元 FEM モデルであっても十分な精度の解を計算することは可能である。この方法が
WRC Bulletin 254 で定義されている極限解析に相当するので、基本的には弾塑性 FEM
解析を用いた解析的な極限荷重を求める方法を使用すればよいことがわかった。二倍勾
配法は保守的であり、使用することに問題ないことがわかった。3 次元モデルに対する極
限解析の適用性を確認するために、穴あき鏡板に対して極限解析を実施し、一次荷重に
対する評価を実施した結果、その適用に問題ないことがわかった。複数の機関でベンチ
マークした結果も有意な差のない結果が得られた。弾性解析の繰返しにより崩壊荷重を
求める弾性代償法の有効性も確認した。以上の結果に基づき、一次荷重に対する設計手
法としては、供用状態に対して、各々の許容値を降伏点とする弾完全塑性体を仮定し
た弾塑性 FEM 解析(極限解析)を用いて評価することとした。その崩壊荷重は、基本的に
は必要な崩壊荷重の精度まで荷重を増加していき求めた荷重値を真の崩壊荷重の近似値
として使用することとした。ただし、対象によっては計算時間が大幅に長くなる場合も
ありうるので、二倍勾配法及び弾性代償法を適用してよいこととした。

第 6 章「繰返し荷重に対する設計手法」では、繰返し荷重に対する評価のうち、シェ
イクダウン及び熱応力ラチェットに対する評価について応力分類が不要な評価方法を検討した。シェイクダウン評価については、一次＋二次応力に対する $3S_m$ 規定や Miller 線図の考え方とも整合をとり、弾性解析により得られた Mises 相当応力に対して表面から内側に板厚の 10%位置で $3S_m$ とする考え方を設定し、原子炉圧力容器の代表的な構造要素に対して、具体的な規定を設けた (CYA 判定基準)。また、CYA 判定基準を満足しない場合は、弾完全塑性体を仮定した弾塑性解析による繰返し解析を行い、相当塑性ひずみの増分が減少傾向にあり、かつ無視できる大きさ以下（具体的には 10^{-4} 以下）になると、あるいは弾性域が残存することで熱応力ラチェット評価の判定基準とした。平底容器等の構造不連続を有するモデルに対して検証計算を実施し、判定基準の妥当性を確認した。以上から、繰返し荷重の設計基準としては、弾性解析結果に対して CYA 判定基準で評価し、満足しない場合は弾完全塑性体を仮定した繰返しの弾塑性解析を行い、相当塑性ひずみの増分が減少傾向にあり、かつ無視できる大きさ以下（10^{-4} 以下）、あるいは弾性域が残存することで熱応力ラチェットが生じないことを確認することとした。

第 7 章「疲労評価及び簡易弾塑性解析に対する設計手法」では、疲労評価において使用する Mises 相当応力に基づく応力の変動幅（相当応力範囲）の計算方法及び簡易弾塑性解析に用いる応力分類が不要な Ke 評価式について検討した。相当応力範囲は ASME Sec.III の NB-3216.2 "Varying Principal Stress Direction" の考え方を用い、応力成分での差を取り、Mises 相当応力を計算することで相当応力範囲を計算することとした。この方法を新設計手法に取り込むこととした。また、Ke 係数については弾性追従の考え方に基づく日本の高速炉規格で用いられている評価式の形を用いて、軽水炉の代表的な構造に対して弾塑性解析により直接 Ke 係数を求め、それらを包絡するように Ke 評価式を設定した。一つは応力分類が必要な S_n 基づく Ke 評価式（Ke'式）であり、この評価式は JSME 設計・建設規格に取り込まれた。もう一つは応力分類が不要な表面の S_n 基づく Ke 評価式（Ke''式）であり、この評価式を新設計手法に取り込むこととした。さらに個々の構造に対して直接弾塑性 FEM 解析を行い、その構造に対する Ke''式のパラメータを設定する方法も取り込むこととした。

第 8 章「弾塑性 FEM 解析を用いた原子炉圧力容器設計手法の体系化」では、許容値の考え方として JSME 設計・建設規格と整合を取り、一次応力評価は一次荷重に対する評価（極限解析）と対応させた。一次＋二次応力評価は繰返し荷重に対する評価に対応させるものとし、疲労評価を含めて検討した。これらの検討結果に基づき、許容基準を明確にし、弾塑性 FEM 解析を用いた原子炉圧力容器の設計手法を体系化した。

以上の研究成果を反映し、JSME 設計・建設規格の事例規格として、「弾塑性有限要素解析を用いたクラス 1 容器に対する強度評価の代替規定」 (NC-CC-005) が発行された。
付録－1

【用語集】

・クラス1機器（第一種容器）：原子炉冷却材圧力バウンダリを構成する容器
・炉心支持構造物：原子炉圧力容器の内部において燃料集合体を直接支持するかまたは拘束する部材をいう。なお、原子炉圧力容器内部にあって、炉心支持構造物、燃料、制御棒、および核計測装置以外の部材は炉内構造物という。
・シェル理論：中央面が局所で厚さが曲率半径及び面内寸法に比べて十分に小さい固体をシェル（かく）という。シェルを3次元理論で扱うと一般に解析が難しくなる。そこで、簡易化して中央面の変位を変数とする二次元理論が用いられ、簡易の程度に応じて種々のシェル理論がある。FEM解析が一般的になる前は、圧力容器の応力解析に使用されていた手法であり、圧力容器を単纯な形状にシェルに分割し、その接続部での変位の連続性と力の釣り合いにより応力を算出していた。この手法は現在でもASME Boiler & Pressure Vessel Code, Section III, Appendix A “Stress Analysis Methods”に説明がある。
・膜応力：断面の垂直応力の平均値に等しい当該断面に垂直な応力成分をいう。
・曲げ応力：断面の垂直応力成分の平均値からの変化成分をいう。
・荷重制御型応力：内圧や外荷重が作用している機器において、それらの力とバランスのために機器部材内に発生する応力である。すなわち、その特性は自己制御性がないことである。換言すると、それは外荷重により発生する応力で、その応力が材料の組成全体にわたって降伏点を超えて増加すると、材料のひずみ硬化による抵抗力以外は持ちえなくなろうに違いない。
・変位制御型応力：容器の自己拘束によって発生する応力である。すなわち、その特性は自己制御性があることである。換言すると、変位制御型応力が発生し、部材が降伏を起こしたりまたはわずかにひずみを生じた場合、ははそれ以上の応力の増加はなく、応力の飽和状態に達する。
・一次応力：外力、内力およびモーメントに対して単純な平衡の法則を満足する垂直応力またはせん断応力をいう。
・一次一般膜応力(P_m)：圧力または機械的荷重によって生じる膜応力であって、構造上の不連続性および応力集中のない部分のものをいう。
・一次局部膜応力：圧力または機械的荷重によって生じる局部膜応力をいう。この場合において、「局部」とは、この応力がS_mの1.1倍以上である範囲が該当する機器の平均半径と厚さとの積の平方根以内であり、かつ、この応力がS_mの1.1倍を超える他の範囲と当該機器の平均半径と厚さとの積の平方根の2.5倍以上接近していない範囲をいう。
・二次応力(Q)：隣接部分の拘束、自己拘束により生じる垂直応力またはせん断応力をいう。
・ピーク応力(F)：応力集中または局部熱応力により、一次応力または二次応力に付加され
応力の増加分をいう。

・応力強さ: 与えられた点で発生している最大主応力と最小主応力の代数的な差をいう。（引張応力の符号は正とし、圧縮応力の符号は負として計算する。）

・Mises相当応力($\overline{\sigma}$): 応力6成分($\sigma_X, \sigma_Y, \sigma_Z, \tau_{XY}, \tau_{YZ}, \tau_{ZX}$)に対して、次式で示される応力をいう。

$$\overline{\sigma} = \frac{1}{\sqrt{2}} \sqrt{\left(\sigma_X - \sigma_Y\right)^2 + \left(\sigma_Y - \sigma_Z\right)^2 + \left(\sigma_Z - \sigma_X\right)^2 + 6\left(\tau_{YZ}^2 + \tau_{ZX}^2 + \tau_{XY}^2\right)}$$ (用1)

・相当塑性ひずみ増分($\Delta \varepsilon_p$): 各塑性ひずみ増分の成分から次式により求められるひずみをいう。

$$\Delta \varepsilon_p = \frac{\sqrt{2}}{3} \sqrt{\left(\Delta \varepsilon_{\sigma_X} - \Delta \varepsilon_{\sigma_Y}\right)^2 + \left(\Delta \varepsilon_{\sigma_Y} - \Delta \varepsilon_{\sigma_Z}\right)^2 + \left(\Delta \varepsilon_{\sigma_Z} - \Delta \varepsilon_{\sigma_X}\right)^2}$$ (用2)

・一次一般膜相当応力(\overline{P}_M): 一次一般膜応力の成分を用いて求めたMises相当応力をいう。

・相当応力範囲(S): 二つの時点 i および j に対して各応力成分を評価し、応力成分の変動に対してMises相当応力を計算した値をいう。具体的には以下の手順で計算する。

① 二つの時点における6つの応力成分を各々($\sigma_{X,i}, \sigma_{Y,i}, \sigma_{Z,i}, \tau_{YZ,i}, \tau_{ZX,i}, \tau_{XY,i}$)および($\sigma_{X,j}, \sigma_{Y,j}, \sigma_{Z,j}, \tau_{YZ,j}, \tau_{ZX,j}, \tau_{XY,j}$)とする。

② 各応力成分について二つの時点間での変動を($\sigma_{X}', \sigma_{Y}', \sigma_{Z}', \tau_{YZ}', \tau_{ZX}', \tau_{XY}'$)とすると、これらは次式で計算される。

$$\sigma_{X}' = \sigma_{X,i} - \sigma_{X,j}, \quad \sigma_{Y}' = \sigma_{Y,i} - \sigma_{Y,j}, \quad \sigma_{Z}' = \sigma_{Z,i} - \sigma_{Z,j}$$
$$\tau_{YZ}' = \tau_{YZ,i} - \tau_{YZ,j}, \quad \tau_{ZX}' = \tau_{ZX,i} - \tau_{ZX,j}, \quad \tau_{XY}' = \tau_{XY,i} - \tau_{XY,j}$$

③ 相当応力範囲(\overline{S})は応力成分の変動($\sigma_{X}', \sigma_{Y}', \sigma_{Z}', \tau_{YZ}', \tau_{ZX}', \tau_{XY}'$)から、次式により算出する。

$$\overline{S} = \frac{1}{\sqrt{2}} \sqrt{\left(\sigma_{X}' - \sigma_{Y}'\right)^2 + \left(\sigma_{Y}' - \sigma_{Z}'\right)^2 + \left(\sigma_{Z}' - \sigma_{X}'\right)^2}$$ (用3)

$$+ 6\left(\tau_{YZ}'^2 + \tau_{ZX}'^2 + \tau_{XY}'^2\right)$$

④ \overline{S} は荷重サイクル中の二つの時点のとり方によって変化するため、サイクル中の二つの時点の組み合わせ中から相当応力\overline{S} が最大となる値をもって評価する。

・評価線: 繰返し荷重に対するシェイクダウン評価において相当応力範囲の分布を評価するために設定する板厚の内面と外面を結ぶ評価用の線のことをいう。

・ピーク相当応力範囲(P_{S}): 二つの計算時点に対してピーク応力を含む応力の成分毎の変動を用いてMises相当応力で求めた相当応力範囲をいう。

・繰返しピーク相当応力振幅(\overline{S}_{alt}): ピーク相当応力範囲の2分の1をいう。

・疲労係数: i番目の組合せの繰返しピーク相当応力振幅$S_{alt,i}$を繰返しピーク応力強さとみなして設計疲労線図より許容繰返し回数 $N(i)$を求め、次式により定義される値をいう。
\[
U_f = \sum_{i=1}^{k} \frac{N_c(i)}{N_a(i)}
\]

(Nc：実際の繰返し回数
i：荷重サイクルの型式
k：荷重サイクルの型式の総数)

・シェイクダウン：負荷される荷重のサイクルに対して、荷重サイクルが繰り返された後、変位またはひずみが進行せず、構造物の挙動が弾性的である状態をいう。
・ラチェット：機械荷重や熱荷重の繰返しにより、変形やひずみが一方向に進行していくことをいう。
・弾塑性解析：材料の弾性特性に加え、降伏条件、流れ則、ひずみ硬化則などの材料の塑性特性を考慮して、荷重の負荷に対する構造物の挙動を求める解析をいう。

・J2流れ理論、J2変形理論：塑性域における応力－ひずみ関係として、応力と塑性ひずみ増分を対応させる理論を流れ理論またはひずみ増分理論といい、これに対して応力と塑性ひずみを対応させる理論を変形理論または全ひずみ理論という。ここで、偏差応力の第2不変量J2を降伏条件、塑性ポテンシャルとして用いていることにより、前者をJ2流れ理論、後者をJ2変形理論という。
・弾完全塑性体：応力が降伏点になれば、それ以降は降伏点で一定と仮定した仮想的な材料
・極限解析：材料を応力－ひずみ関係を弾完全塑性体と仮定した弾塑性解析(特に本検討では弾塑性FEM解析を用いた場合に対しても極限解析と呼ぶ)
・崩壊荷重：構造物が外力とのバランスを保てず、変形を生じる状態(荷重の増加がないにも係らず、現在の形状を維持できなくなった状態)、もしくは設計限界としてそのような状態と定義した状態を「崩壊」とよび、そのときの荷重をいう。
・弾性代償法解析：下界定理に基づいた解析法であり、極限解析の静的可容応力をFEMによって求められるもので、解は崩壊荷重の下界にあり保守的となる。弾性解析の結果に基づいて以下の手順で計算する。
 a. 任意の正の基準応力\(\sigma_0\)を設定する。
 b. 対象とする一次荷重\(P_d\)を与えた弾性解析（iステップ目）を実施した後、各要素のMises相当応力\(\sigma_i\)を求める。
 c. 全ての要素を対象に、次式により、各要素の繰弾性係数\(E_{i+1}\)を計算する。
 \[
 E_{i+1} = E_i \frac{\sigma_0}{\sigma_i}
 \] (用 5)
 d. 上式により求めた\(E_{i+1}\)を用いて(i+1)ステップでの弾性応力解析を実施する。
 e. (i+1)ステップにおける構造物内のMises相当応力分布を求め、その中の最大値(平衡応力)を求める。
f. c., d.および e.のステップを繰り返す。
g. 各ステップで求めた平衡応力の中で最小値を \(\sigma_{\text{min}} \) とする。
h. \(\sigma_{\text{min}} \) と許容応力を比較する。
各要素の線弹性係数を修正し、計算を繰り返すと言う比較的簡単な手順によるもので、弾塑性解析に比べて比較的短時間で計算が可能となる。

・弾性核：応力状態が荷重サイクルの繰返しに対して常に弾性状態にある部分をいう。
・PWR：加圧水型原子炉（Pressurized Water Reactor）
・BWR：沸騰水型原子炉（Boiling Water Reactor）
・\(S_m \)：設計応力強さ
・\(S_f \)：設計降伏点
・\(S_u \)：設計引張強さ

[参考文献]
付録-2

【原子炉圧力容器の破壊様式と破壊防止評価】

圧力容器の設計に対する代表的な破壊様式と破壊防止評価の考え方を付表2-1に示す。具体的には以下のとおりである【付2-1,2,3,4,5】。

(1) 延性破壊
内圧を受ける円筒を例にすると、円筒が延性材料できている場合、内圧が増加するとまず内面が降伏する。次に、外面も降伏する全塑性状態を経て、ついに不安定変形を生じて破壊する。このように、最終破断まで著しい伸びや絞りを伴う破壊を延性破壊という。

(2) 進行性破壊
進行性破壊は、一度の限度を超える荷重負荷で破壊するような形式ではなく、応力の繰返しによりひずみが蓄積し、構造が一方向に進行性の変形を生じ、破壊に至る場合である。
一方、荷重の状態によっては進行性変形は生じず、数回の繰返し変形の後に弾性的な挙動を示す状態になる。このような状態をシェイクダウンという。
このような進行性破壊の評価方法としては、後述するMillerが提案した評価方法(Miller線図)がある。

(3) 疲労破壊
繰返し荷重によって発生・進展する破壊を疲労と呼ぶ。原子炉圧力容器に対する疲労評価においては、運転条件による温度・圧力の変化(過渡条件)が複数の種類を受け、必ずしもそれらの過渡条件を受ける順番が規定できないため、JSME設計・建設規格ではそれらを応力の変動幅の大きい組合せから順番にMiner則を用いて評価することとしている。
また、疲労評価に用いる疲労線図は、疲労試験データの平均曲線に対して、応力に対して1/2、回数に対して1/20し、さらに平均応力の効果として修正Goodman線図の考え方を用いて考慮した設計疲労線図を用いている。

(4) 不安定破壊
圧力容器にき裂があった場合、過度な荷重が負荷された場合にき裂が進展し、不安定破壊に至る場合がある。フェライト鋼においては低温の場合には材料がほとんど変形せずに破壊に至る場合があり、そのような破壊を非延性破壊(脆性破壊)と呼ぶ。一方、フェライト鋼でも温度が高い場合やオーステナイト系材料においては、き裂が延性的に伸びていくが、荷重が過度であるとそのような材料でも不安定破壊を生じる場合があり、そのような破壊を延性不安定破壊と呼ぶ。このようなき裂がある場合の評価を行うにあたっては、脆性破壊に対しては線形破壊力学、延性破壊に対しては弾塑性破壊力学が用いられる。
原子炉圧力容器では燃料からの高速中性子の照射を受けて材料の遷移温度の上昇及び上部棚破壊靭性が低下することが知られており、低温側（非延性破壊を生じる温度領域）では線形破壊力学、高温側（延性破壊を生じる温度領域）では弾塑性破壊力学を用いて評価することになる。

(5) クリープ変形

物体に力が加わった場合に時間とともに変形が進行する現象をクリープというが、特に高温における金属材料において顕著に表れる。圧力容器においては高速炉のような高温で使用され場合が評価の対象となり、軽水炉の圧力容器では最高使用温度が約350℃であり、クリープ変形は無視しうると考えられ、評価の対象とはなっていない。

(6) 座屈

荷重があるレベルに達すると、変形の様式がそれまでの状態（初期変形様式）と異なる変形モードに移る現象である。内圧をうける原子炉圧力容器では基本的には問題にはならないが、例えば、タンク内が内部流体等により負圧になる場合や、地震等により圧縮の荷重を生じるような場合は座屈に対する評価が必要となる。ASME Sec.IIIやJSME設計・建設規格では座屈を評価するチャートが整備されている。

(7) 応力腐食割れ（Stress Corrosion Cracking : SCC）

SCC は感受性のある材料が特定の環境条件と応力条件に曝されている場合にき裂が発生・進展する現象であり、「材料」、「応力」及び「環境」の3つの因子が重畳した場合に発生する。

PWR 環境中では高ニッケル合金の600合金が SCC 感受性の高い材料であり、溶接や機械加工による高い残留応力が発生した場合に SCC が発生した事例がある。BWR 環境では、ステンレス鋼の溶接熱影響部で SCC が発生した事例がある。

[文献]

付表 2-1 代表的な破壊様式と破壊防止評価の考え方

<table>
<thead>
<tr>
<th>破壊様式</th>
<th>現 象</th>
<th>クラス 1 容器への要求</th>
<th>破壊防止評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>延性破壊</td>
<td>塑性崩壊</td>
<td>一次応力評価</td>
<td>最大せん断応力説／ひずみエネルギー説</td>
</tr>
<tr>
<td>進行性破壊</td>
<td>ラチェット変形</td>
<td>一次＋二次応力評価 ラチェット評価</td>
<td>・シェイクダウン ・Miller 線図</td>
</tr>
<tr>
<td>疲労破壊</td>
<td>繰返し荷重による破壊</td>
<td>疲労評価</td>
<td>・組合せの評価→Miner 則 ・設計疲労線図 →設計係数(応力: 2, 回数: 20) →平均応力補正(修正 Goodman)</td>
</tr>
<tr>
<td>非延性破壊 延性破壊</td>
<td>急速不安定破壊</td>
<td>非延性破壊評価 延性破壊評価</td>
<td>•線形破壊力学 •弾塑性破壊力学 •中性子照射脆化</td>
</tr>
<tr>
<td>クリープ変形</td>
<td>高温領域での時間依存性破壊</td>
<td>－</td>
<td>使用温度制限</td>
</tr>
<tr>
<td>座屈変形</td>
<td>圧縮荷重による構造の崩壊</td>
<td>座屈評価</td>
<td>・チャートによる設計</td>
</tr>
<tr>
<td>応力腐食割れ</td>
<td>材料＋環境＋応力による割れ</td>
<td>発生抑制の考慮</td>
<td>事例規格 NC-CC-002「応力腐食割れ発生の抑制に対する考慮」</td>
</tr>
</tbody>
</table>
発表論文

(1) 朝田, “加圧水型原子力発電所 1 次系機器の技術進歩(2) 原子炉容器,” 原子力工業, 第 40 巻, 第 11 号, 日刊工業新聞社, 1994, p.63. [引用: 第 2 章]

(2) 富田, 進藤, 朝田, 後藤, 「ひずみ速度依存性平面ひずみブロックの引張変形挙動の解析」, 日本機械学会論文集(A 編), 54 巻 501 号(昭和 63-5), 論文 No.87-0726, p.1124. [引用: 第 3 章]

(7) 朝田, 早野, 佐藤, 笠原, 「機械学会設計・建設規格事例規格における弾塑性有限要素解析を用いたクラス 1 容器に対する強度評価手法」, 日本機械学会論文集(A 編), 74 巻 748 号(2008-12), 論文 No.08-0541, p.1485. [引用: 第 5, 6, 7, 8 章]

[採録決定論文]

(1) 朝田, 中村, 「機械学会設計・建設規格における簡易弾塑性解析手法」, 日本機械学会論文集, A 編 (投稿論文採択通知受理済み2008年10月28日), 論文 No.08-0638, 2009年1月号掲載予定) [第 7.3 章に対応]
[参考論文]

(*)：中村隆夫氏学位論文にて使用
謝辞

本論文の作成にあたり、懇切丁寧にご指導を戴きました神戸大学大学院工学研究科機械工学専攻 富田佳宏 教授に深甚の謝意を表します。論文の作成に対してきめ細かくご指導を戴きました神戸大学大学院工学研究科 機械工学専攻 中井善一 教授に深く感謝いたします。また、論文をまとめるにあたり、神戸大学大学院工学研究科 情報知能学専攻 多田幸生 教授から有益なご助言、ご指導いただきましたことに心から感謝いたします。

本研究は、(社)日本高圧力技術協会「3次元 FEM 応力評価研究委員会(TDF 委員会)」及び(社)火力原子力発電技術協会「弾塑性解析活用設計基準検討会(EPD 検討会)」での検討成果を基に、発電用原子力設備規格・設計・建設規格の事例規格「弾塑性有限要素解析を用いたクラス1容器に対する強度評価の代替規定」(NC-CC-005)を策定するにいたった(社)火力原子力発電技術協会「簡易弾塑性解析用応力割り増し係数検討会(Ke 検討会)」を含む一連の研究成果を取りまとめたものです。これらの研究においては、東京大学工学部 故朝田泰英 名誉教授、神奈川工科大学工学部 西口磯春 教授からご指導とご助言をいただき、また TDF 委員会、EPD 検討会、Ke 検討会及び日本機械学会発電用規格委員会、特に EPD タスクの委員の方々のご協力により成し得たものであり、関係者の方々に心から感謝いたします。特に岡本旦夫氏には会社を超えて、多大なるご指導を戴き、心より厚くお礼申し上げます。

研究の遂行にあたり、三菱重工業株式会社神戸造船所原子力機器設計部 小山幸司 主幹技師から規格に関するご指導とご助言、US-APWR プラント推進室 飯田将人 室長からは入社以来、種々のご指導とご助言をいただき、心より感謝いたします。さらに、研究の取りまとめにあたり、神戸造船所原子力機器設計部 加口仁 部長、橋本達哉 次長、同機器設計課 嵐崎寛 課長からご助言とご激励をいただきましたことを感謝いたします。

最後に、終始かわらず著者を支えてくれた妻 木絹子、長男 昂大、次男 泰智に心からの感謝の言葉を述べて結びといたします。