<table>
<thead>
<tr>
<th>Title</th>
<th>有限要素解析による管フランジ締結体の締付けおよび力学的特性の評価に関する研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>高木, 知弘</td>
</tr>
<tr>
<td>Degree</td>
<td>博士 (工学)</td>
</tr>
<tr>
<td>Date of Degree</td>
<td>2003-03-31</td>
</tr>
<tr>
<td>Resource Type</td>
<td>Thesis or Dissertation / 学位論文</td>
</tr>
<tr>
<td>Report Number</td>
<td>神戸商船大学乙0003</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://www.lib.kobe-u.ac.jp/handle_kernel/DS200003</td>
</tr>
</tbody>
</table>

※当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

PDF issue: 2020-04-24
神戸商船大学博士論文

有限要素解析による
管フランジ締結体の締付けおよび
力学的特性の評価に関する研究

2003年1月

髙木知弘
目次

第1章 緒 論
 1.1 研究の背景 ... 1
 1.1.1 トルク法によるボルトの締付け 2
 1.1.2 管フランジ締結体とガスケットの非線形特性 3
 1.1.3 管フランジ締結体の力学的特性の評価手法 9
 1.1.4 弾性相互作用 .. 9
 1.2 研究の目的と論文の構成 12
 1.2.1 研究の目的 ... 12
 1.2.2 論文の構成 ... 13

第1部 単一ボルトの締付け過程における力学的特性の評価 17

第2章 トルク法によるボルト締付け過程の力学的特性について 19
 2.1 緒言 ... 19
 2.2 実験方法 ... 20
 2.3 実験結果 ... 21
 2.3.1 トルクと軸力の時間変化 21
 2.3.2 軸力と接触面摩擦係数 22
 2.4 解析方法 ... 26
 2.4.1 全体剛性方程式 26
 2.4.2 解析条件 ... 27
 2.4.3 締付け過程における接触状態 27
 2.4.4 解析モデル ... 27
 2.5 解析結果 ... 28
 2.5.1 摩擦係数の影響 28
 2.5.2 グリップ長さの影響 29
<table>
<thead>
<tr>
<th>章目</th>
<th>項目</th>
<th>内容</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>考察</td>
<td>...</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>結言</td>
<td>...</td>
<td>34</td>
</tr>
</tbody>
</table>

第3章 ポルト締付け過程の弾塑性有限要素解析 35

<table>
<thead>
<tr>
<th>節目</th>
<th>項目</th>
<th>内容</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>緒言</td>
<td>...</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>解析方法</td>
<td>...</td>
<td>36</td>
</tr>
<tr>
<td>3.2.1 軸対称モデルを用いた三次元解析</td>
<td>...</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3.2.2 接触問題</td>
<td>...</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>3.2.3 解析条件</td>
<td>...</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>3.2.4 有限要素モデル</td>
<td>...</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>実験方法</td>
<td>...</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>解析結果</td>
<td>...</td>
<td>42</td>
</tr>
<tr>
<td>3.4.1 ポルト軸応力と伸びおよびナット回転角の関係</td>
<td>...</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>3.4.2 塑性域の広がり</td>
<td>...</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>3.4.3 各応力成分の変化</td>
<td>...</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>3.4.4 ねじ山荷重分担率の変化</td>
<td>...</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>3.4.5 ポルト呼び径の影響</td>
<td>...</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>考察</td>
<td>...</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>結言</td>
<td>...</td>
<td>50</td>
</tr>
</tbody>
</table>

第II部 金属平形ガスケットを用いた管フランジ締結体の特性評価 51

第4章 管フランジ締結体のポルト締付けシミュレーション 53

<table>
<thead>
<tr>
<th>節目</th>
<th>項目</th>
<th>内容</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>緒言</td>
<td>...</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>解析方法</td>
<td>...</td>
<td>54</td>
</tr>
<tr>
<td>4.2.1 接触問題</td>
<td>...</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>4.2.2 全体剛性方程式</td>
<td>...</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>4.2.3 解析モデル</td>
<td>...</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>4.2.4 ポルト軸力の与え方</td>
<td>...</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>実験方法</td>
<td>...</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>ポルトを等しい初期軸応力で締付ける場合</td>
<td>...</td>
<td>62</td>
</tr>
</tbody>
</table>
4.4.1 フランジ座面形状の影響と解析手法の妥当性 62
4.4.2 管フランジの呼び径の影響 64
4.5 締結完了時の均一なボルト軸応力を目的とする場合 66
4.6 結言 68

第5章 管フランジ締結体の内圧荷重特性におよぼすフランジ形状の影響 69
5.1 緒言 69
5.2 解析方法 70
 5.2.1 はめ合いねじ部等価高さ 70
 5.2.2 解析モデル 71
 5.2.3 境界条件 72
5.3 実験方法 73
5.4 解析結果と考察 75
 5.4.1 ボルト軸応力と解析手法の妥当性 75
 5.4.2 フランジ座面圧力 78
 5.4.3 ボルト本数の影響 80
 5.4.4 フランジ厚さの影響 81
5.5 結言 83

第6章 金属平形ガスケット付き管フランジ締結体の荷重荷重特性の評価 84
6.1 緒言 84
6.2 解析方法 85
 6.2.1 解析モデル 85
 6.2.2 境界条件 86
 6.2.3 解析の進め方 86
6.3 実験方法 88
6.4 内圧のみが作用する場合 89
 6.4.1 ボルト軸応力の変化 89
 6.4.2 初期締付け時のガスケット座面圧分布 90
 6.4.3 ガスケット座面圧分布変化 91
6.5 内圧と曲げが同時に作用する場合 92
第III部 ガスケットの非線形挙動を考慮した管フランジ締結体の特性評価

第7章 ガスケットの応力-ひずみ関係の同定
 7.1 緒言 ... 101
 7.2 試験方法 .. 102
 7.2.1 試験ガスケット 102
 7.2.2 試験手順 104
 7.3 応力-ひずみ関係の同定手順と同定結果 107
 7.4 結言 ... 112

第8章 管フランジ締結体のボルト締付け過程の有限要素解析
 8.1 緒言 ... 113
 8.2 解析方法 .. 114
 8.2.1 増分計算 114
 8.2.2 一次元ガスケット要素 114
 8.2.3 接触問題 115
 8.2.4 全体剛性方程式 115
 8.2.5 解析モデル 116
 8.2.6 解析手順 116
 8.3 実験方法 .. 120
 8.4 解析結果 .. 121
 8.4.1 ボルト軸力の変化 121
 8.4.2 ボルト締付け過程の管フランジの変形 123
 8.4.3 ガスケット座面圧分布の変化 123
 8.4.4 3回の締付け作業 125
 8.5 結言 ... 126
第9章 管フランジ締結体のボルト締付け手順の評価 128

9.1 緒言 ... 128
9.2 解析方法 129
 9.2.1 解析対象と有限要素モデル 129
 9.2.2 解析条件 131
9.3 解析手法の実用性の検討 132
 9.3.1 実験方法 132
 9.3.2 ボルト軸力の影響 134
 9.3.3 複数回の締付け作業 134
9.4 解析結果 136
 9.4.1 ボルト軸力の変化 136
 9.4.2 平均ボルト軸力の変化 141
 9.4.3 ガスケット座面圧力分布変化 143
 9.4.4 締付け軸力のばらつきの影響 145
9.5 結言 ... 150

第10章 有限要素解析による管フランジ締結体のボルト締付け指針の検討 152

10.1 緒言 ... 152
10.2 ガスケットのモデル化の検討 153
 10.2.1 ボルト締付け解析に対するガスケットのモデル化の影響 153
 10.2.2 負荷曲線と除荷曲線のヤング率の影響 158
10.3 剛性の高い管フランジのボルト締付け手順の検討 160
 10.3.1 Install の影響 161
 10.3.2 Install 時に締けるボルト本数の影響 167
10.4 管フランジ締結体のボルト締付け指針 168
10.5 結言 ... 170

第11章 効率的なボルト締付け手順の検討 172

11.1 緒言 ... 172
11.2 変位制御による初期締付け軸力の算出 173
 11.2.1 解析手順 173
第11章 ポルト締結の力の変化に伴う効率的な検討

11.2.2 解析モデル 175
11.2.3 ポルト軸力の変化 176
11.2.4 ガスケット座面圧力の変化 177
11.3 変位制御法の大口径管フランジへの適用性の検討 178
11.4 弾性相互作用係数法 181
11.5 初期締付け軸力の算出手順 182
11.6 1回の締付け作業で均一なポルト軸力状態を得る場合 183
 11.6.1 解析結果と妥当性の検討 183
 11.6.2 ガスケット座面圧力の変化 185
11.7 締付け軸力の最大値を制限して均一なポルト軸力状態を得る場合 186
 11.7.1 解析手順 186
 11.7.2 2回の締付け作業で均一なポルト軸力状態を得る場合 188
 11.7.3 任意の回数の締付け作業で均一なポルト軸力状態を得る場合 188
11.8 効率の良い締付け手順の提案 190
11.9 結言 192

第12章 ポルト抜き取り過程の有限要素解析 193

12.1 はじめに 193
12.2 ポルト抜き取り過程の有限要素解析 194
 12.2.1 有限要素モデル 194
 12.2.2 解析手順 194
 12.2.3 解析条件 196
12.3 解析結果 196
 12.3.1 ポルト軸力の変化 196
 12.3.2 解析手法の妥当性の検討 198
 12.3.3 ガスケット座面圧力分布変化 200
 12.3.4 2回の作業で抜き取る場合 201
 12.3.5 ポルト欠落時の特性評価 203
12.4 結言 204

第13章 内圧および曲げモーメント 負荷時の管フランジ締結体の力学的特性 205
第13章

13.1 緒言 ... 205

13.2 解析方法 ... 206
 13.2.1 解析手順 .. 206
 13.2.2 解析モデル .. 207

13.3 一様なボルト軸力の場合 208
 13.3.1 内圧負荷過程 209
 13.3.2 曲げモーメント負荷過程 210

13.4 ボルト締付け過程を考慮した場合 212

13.5 結言 .. 214

第14章 結論 ... 216

参考文献 .. 220

関連発表論文 ... 231

謝辞 ... 233
第1章

緒 論

1.1 研究の背景

管フランジは管、管継手、バルブ等の取り外しを必要とする部分等の相互の結合に用いられるもっとも重要な配管要素の一つである。管フランジはガスケットを間に介して複数本のボルトで締付けられ、このような構造物は管フランジ締結体とよばれている。ガスケットとして広く使われているジョイントシートガスケットやうず巻形ガスケットは、その厚さ方向の剛性がフランジやボルトに比べて極端に低いため、管フランジ締結体の力学的特性はガスケットに大きく影響される。さらに、そのようなガスケットの応力-ひずみ関係は非常に強い非線形挙動を示し、このことが管フランジ締結体の力学的特性の評価を困難にしている。

管フランジ締結体は、古くから化学プラント、石油工業をはじめ工業分野の多くで用いられており、数多くの研究が行われてきた。しかしながら、その構造や挙動の複雑さのため明確な設計手法は未だ確立されたとはいえず、しばしば内部流体の漏洩による大規模な事故を引き起こしてきた。記憶に新しいところでは、1995年の阪神淡路大震災の際に、臨海地区プラントの液状化現象によるLNG貯蔵タンクの緊急遮断バルブ付近の管フランジ締結部からの漏洩事故がある。また、ガスケットを間に介しているという構造上、通常使用時においても特に内部流体が気体の場合は少量ながらも漏洩が生じており、プラント全体の管フランジ締結部からの漏洩による損害は少なくないと考えられる。さらに今日の環状規制の強化により、個々の管フランジ締結体からの漏洩量を許容値以下に抑える必要が生じ、これまでの強度評価中心の設計手法では対応がでなくなってしまった。
欧米では1970年代中頃から漏洩特性に対する積極的な研究が行われており\(^4,5\)，内部流体の漏洩量を設計パラメータとする管フランジ締結体の設計法が確立されようとしている。この設計法はガスケットの漏洩試験により得られる新ガスケット係数を用いることに特徴がある。しかしながら、漏洩試験は一様なガスケット座面圧力下で行われ、実際の管フランジ締結体のフランジローテーションによる面圧の不均一分布、内圧や曲げモーメント等の外力の负荷による面圧変化は考慮されていない。

また、仮に上記の点を考慮した管フランジ締結体の設計手法が確立されたとしても、その施工時、つまり管フランジを多数のボルトで締付ける際に、設計条件を満足する均一なボルト軸力状態を達成することは非常に困難である。これは、管フランジの場合、隣り合う2本のボルト間の距離が小さく、各ボルトの締付けが相互に影響をおよぼし合うためである。この現象を弾性相互作用という。管フランジ締結体の場合、この現象により生じるボルト軸力のばらつきは、単一のボルトをトルク法で締付ける際の摩擦係数に起因するボルト軸力のばらつきよりも大きくなることが報告されている。しかしながら、多数のボルトによる管フランジ締結体の締付け過程を評価した研究はあまりみられないようである。

以上の点を考慮すると、管フランジ締結体の明確な設計手法、さらには施工時に生じるボルト軸力のばらつき等を考慮した設計手法、設計のコンセプトを満足するような施工手順を確立することは工業上極めて重要である。そのためには、まず管フランジ締結体の締付け特性や力学的特性を評価できる解析ツールを作成することが必要である。このツールとしては、有限要素法に代表される数値解析を用いることが非常に有効であると考えられるが、前に述べた管フランジ締結体の形状とガスケット挙動の複雑さのため、解析手法は確立されているとはいえない。

1.1.1 トルク法によるボルトの締付け

ボルトを締付ける方法は、大きく分類するとナットを回転させる方法と回転させない方法がある\(^6\)。ナットを回転させて締付ける代表的な方法としては、トルク法\(^7,8,9,10,11,12,13\)，トルク勾配法，ナット回転角法がある\(^14\)。トルク法は弾性域締付け，トルク勾配法は塑性域締付け\(^15,16,17,18,19,20,21\)において用いられ，ナット回転角法は弾性域と塑性域のいずれにも適用されている。また，ナットを回転させずに締付けを行う方法としては，油圧テンショナを使用した張力法\(^22,23,24,25\)，ボルトヒー
タを使用した熱膨張法等が有る．締付け方法は、対象とするポルトの大きさ、要求される軸力の大きさと精度、作業性、締結部の形状などを考慮して選択される．

トルク法は締付けトルクとポルト軸力の線形関係を利用した締付け方法であり、作業性に優れた簡便な方法であるので、最も広く使用されている．しかしながら、締付けトルクの 90% 前後がねじ面やナット座面の摩擦によって消費されるため、締付け力のばらつきは各接触面の摩擦特性によって大きく変化する．締付け軸力のばらつきを少なくするためには、ねじ面やナット座面に潤滑剤を塗布する方法が広く用いられているが、最近では締付けトルクと圧縮力を同時に負荷して各接触面の表面粗さや形状誤差の影響を低減させる方法も研究されている．また、トルク法を用いたポルト締付け過程の挙動は複雑である．特に締付け完了時、つまり締付けトルクを解放する過程においては、ねじ部トルクの値は低下し、ナット座面トルクの作用方向が反転する．このような特性はよく知られているが、ポルト軸力、各部トルク、各部摩擦係数の相互関係などは明確にされていない．これらの点を明らかにすることは、トルク法をより精度良く適用するために重要な課題であると考えられる．

さらに、トルク法を採用する場合、ポルトは軸方向応力とせん断応力を受ける、組合せ応力状態となる．この場合、ねじ谷底の応力集中は軸力のみの場合より高くなる．ポルトのねじ谷底の応力集中に関する研究は、弾性接触問題による軸対称有限要素解析を用いた研究が数多く行われている．これらの研究の結果、ねじ谷底の応力集中係数は非常に高く、比較的低いポルト軸力値においても谷底では局部的な降伏が生じていることが考えられる．また最近では、塑性域締付け法が積極的に用いられているようになってきているが、ねじ谷底における塑性域の広がりなど不明な点が多いようである．これらの点を考慮すると、トルクによるポルト締付け過程の特性を弾塑性問題として評価することは、極めて重要であると考えられる．

1.1.2 管フランジ締結体とガスケットの非線形特性

図 1.1 は実際のプラントで使用されている管フランジ締結体を示している．管フランジ締結体は、図 1.2 に示すように、管フランジ・ガスケット・ポルトにより構成されるのが一般的である．

管フランジ
管フランジの形状および寸法は、JIS, ANSI/ASME, DIN 等の規格により定められているが、それらの寸法系列はいずれも異なっている。管フランジを座面の形状により分類すると、全面座フランジ（flat face flange）、平面座フランジ（raised face flange）、みぞ形フランジ（tongue and groove flange）、はめ込み形フランジ（male-female flange）、
リングジョイント形フランジ（ring joint gasket flange）などがある。全面座フランジや平面座フランジでは、1 対の管フランジの間にガスケットが存在するため管フランジは互いに接触することはない。一方、みぞ形フランジやかめ込み形フランジは、ガスケットを締付け緩切状態に達すると管フランジが互いに接触し、metal-to-metal contact 状態となる(36)。このように、管フランジ締結体の挙動は座面形状によって変化する。ガスケットの厚さ方向の剛性がフランジに比べて極端に低い場合、特に全面座フランジと平面座フランジにおいては管フランジ締結体の特性がガスケットの特性に大きく影響を受ける。また最近では、図 1.3 に示すような ANSI 規格等に比べてコンパクトな管フランジ締結体(37, 38, 39)、ガスケットレスフランジ(40) なども開発されている。しかしながら形状が比較的簡単で加工が容易であるため、一般的には低圧用では全面座フランジ、高圧用では平面座フランジが広く使用されており、今後もその傾向は続くと考えられる。

ガスケットの非線形特性

回転や往復運動などのような運動部分の密封に用いられる運動用のシールをパッキンと呼ぶのに対して、管フランジなどのように静止部分の密封に用いられる静止用シールをガスケットと呼ぶ(41)。ガスケットの種類は極めて多岐にわたるが、素材により分
図 1.4 うず巻形ガスケットの構造

図 1.5 ガスケットの非線形特性

類を行うと次のようになる。

1. ソフトガスケット（ジョイントシートガスケット，ゴムシートガスケット，フッ素樹脂ガスケット，撚張黒鉛ガスケット，etc）
2. セミメタリックガスケット（うず巻形ガスケット，メタルジャケットガスケット，
3. メタルガスケット（平形ガスケット、波形ガスケット、のご歯形ガスケット、リングジョイントガスケット、Οリング、etc）

これらのガスケットの中で工業的に最も広く用いられているガスケットは、ジョイントシートガスケットとうず巻形ガスケットである。

ジョイントシートガスケットは、繊維に特殊なゴム系バインダーと少量の充填材を混和し圧延加硫したシート状のガスケットである。約50度から300度程度までの比較的低温領域、また約4MPa以下の低圧領域で用いられることが多い(44)。今とのこと、繊維に石綿繊維を使用した石綿ジョイントシートガスケットが広く使用されているが、石綿規制により今後ガスケットにおいても石綿の使用ができなくなる可能性があり、アラミド繊維などを用いた石綿代替製品の開発が行われている(42, 43)。

うず巻形ガスケットは、V字形断面の金属製フーブと緩衝材であるフィラーを重ね合わせ、うず巻き状にかたく巻き込んだものである。図1.4にうず巻形ガスケットの構造を示している。管フランジの座面形状や使用条件に応じて、内輪や外輪が使われる。また、約200度から600度の温度範囲、約30MPa以下の圧力領域において使用されることが多い(44)。

上記のように、ジョイントシートガスケットとうず巻形ガスケットは、材料的または構造的に複合化されており、その圧縮過程において非常に複雑な挙動を示す。図1.5はガスケット圧縮時の応力-ひずみ関係の非線形特性を模式的に示している。圧縮が開始されると直ちに非線形特性を示し、一般金属にみられるような弾性域は存在しない。また、任意の応力レベルから除荷を行うと負荷曲線とは異なる除荷曲線を描き、荷重が零になった点では永久ひずみを生じる。さらに、再負荷を行うと除荷曲線とは異なった曲線を描き、ヒステリシス特性を生じる。このように、ジョイントシートガスケットやうず巻形ガスケットは非常に複雑な挙動を示し、管フランジ締結体の特性評価を困難にしている。しかしながら、そのデータの整理方法、および解析手法などは明確にされていない。またこれらのガスケットは、管フランジ締結体のシール特性を向上させるため、管フランジに比べて厚さ方向の剛性が非常に小さくされている。おおまかなヤング率をみると、鋼材が200GPa程度であるのに対して、ガスケットの場合は数百MPaから数GPa程度である。このため、管フランジ締結体の力学的特性はガスケットに強く影響される。
管フランジ設計規格とガスケット係数

管フランジ締結体の設計規格としては ASME Boiler and Pressure Vessel Code が広く用いられており、JIS B 2205 も ASME の方法を採用している。この規格は 1927 年に発表された Waters らの研究（45）を基に作成され、1930 年代後半に規格化されている。しかしながら、管フランジ締結体の特性は非常に複雑であるため、規格の中には不明確な点もみられる。そのため、より精度の高い管フランジ締結体の特性評価を行うために、それ以降も多数の研究が行われている（46, 47, 49, 50, 51, 52, 53）。

管フランジ締結体の設計にあたっては、1943 年に Rosseheim と Markle により発表されたガスケット係数（m, y）が用いられてきた（54）。これらの係数は定義が非常に曖昧であり、試験方法が明らかにされていないという欠点がある（55, 56）。また、これらの係数は内部流体が漂れるか漂れないかという概念の基で設定されているが、実際問題として特に内部流体が気体である場合は漏れを完全に止める事は非常に困難であり、通常「Fugitive Emission」が生じる。さらに、1963 年に大気浄化法（Clean Air Act）が制定され、大気汚染物質の大気への排出が規制されることになった。その後、米国環境保護庁が 1990 年に改正大気浄化法（CAAA：Clean Air Act Amendment of 1990）を公布し、この中でプラントから放出される有害大気汚染物質と揮発性有機化合物の排出量が規制されている（3）。上記のような環境規制に対応するため、アメリカの PVRC（Pressure Vessel Research Council）の中の BFC 委員会（Bolted Flanged Connections Commitee）は、1974 年から圧力容器の漏洩試験を開始し（4, 5），管フランジ締結体の設計にタイトネスという漏洩量を定量的に評価する概念を導入した。ここでは（m, y）に変わる新ガスケット係数（G_b, a, G_s）が提案されている（56, 57）。

PVRC の提案する新ガスケット係数は、ガスケット座面圧分布が一様であるという理想的な条件下で決定される。しかしながら、実際の管フランジ締結体ではガスケット座面圧はフランジローテーションなどのため不均一に分布し、また内圧や外荷重の作用下で変化するため、新ガスケット係数の信頼性がどの程度のものであるか疑問が残る。また、漏水は実際の管フランジ締結体の漏洩試験から得られるガスケット係数（G_b, a, G_s）が一様なガスケット座面圧状態のものと異なることを報告している（58）。
1.1.3 管フランジ締結体の力学的特性の評価手法

管フランジの形状に関する研究，および金属平形ガスケットを用いた研究はこれまで数多く行われている．林ら (59) は光弾性実験を行うことにより，また西岡，森田，河嶋ら (60, 61, 62) は軸対称有限要素解析により，ボルト締付け時および内圧荷負時に管フランジに生じる応力を評価している．澤らは三次元弾性論を用いた一連の研究により，管フランジ締結体が内圧や曲げモーメントを受ける際の，内力係数やガスケット座面圧分布などを評価している (63, 64, 65, 66, 67, 68, 69)．また，尾田らは軸対称有限要素解析を用いて管フランジの形状最適化を試みている (70)．1990年頃からは三次元有限要素解析を用いた研究も行われている (71)．

うず巻形ガスケットなど複雑な挙動を示すガスケットを用いた管フランジ締結体の力学的特性を評価する手法としては，有限要素解析が広く適用されている．解析を簡単にするために，ガスケットを線形弾性体とする研究が多くみられるが (58, 72, 73)，図1.5に示したようにガスケットは負荷時と除荷時の剛性が異なり，精度の高い評価を行うためにはボルト締付け過程と内圧負荷過程においてガスケットの剛性を変化させて解析を行う必要がある．正司，永田らは，ガスケットを線形ばねとし負荷曲線と除荷曲線で別々のヤング率を用いるモデル化を提案し，一連の研究においてそのモデル化の有効性を強調している (74, 75, 76, 77)．澤らは，一般的な金属材の弾塑性解析を工夫して，ガスケットの非線形挙動をモデル化している (78)．また，最近では汎用有限要素コードABAQUSにガスケットの非線形挙動を取ることのできるガスケット要素が導入され，これを用いた研究も報告されている (79)．

1.1.4 弾性相互作用

管フランジ締結体が目標とするシール能力を発揮するためには，その組立作業の施工時に全てのボルトの軸力を均一にすることが重要である．

管フランジ締結体は多数のボルトにより締結され，その組立は一般に多数のボルトを1本ずつ締付ける作業が行われている．組立作業中，一旦締付けを終えたボルトの軸力はボルト締付け過程において一定ではなく，他のボルトの締付けにより変化することが知られている．これは，管フランジは隅り合うボルト間の距離が小さいため，すでに締付けを終えているボルトの軸力は他のボルトの締付けの影響を受けやすいため
Initial State

Tighten bolt 1

Tighten bolt 2

Tighten bolt 3

図1.6 弾性相互作用
Install: Hand tighten, then "snug up" to 10-20 ft-lb.
Round 1: Tighten to 20% -30% of Target Torque.
Round 2: Tighten to 50% -70% of Target Torque.
Round 3: Tighten to 100% of Target Torque.
Round 4: Continue tightening the bolts, but on a rotational clockwise pattern until no further nut rotation occurs at the Round 3 Target Torque value.
Round 5: Time permitting, wait a minimum of four hours and repeat Round 4; this will restore the short-term creep relaxation/embedment losses.

図 1.7 ASME のボルト締付け指針
例えば図1.6のbolt3を締付けた場合、フランジがこれのように作用し、bolt2の軸力を増加させるような場合もある。この現象は高圧用や小口径のような比較的剛性が高い平面座フランジで生じやすく、ここでは口開き変形と呼ぶことになる。（82）また各ボルト間の弾性相互作用の影響は、フランジとガスケットの剛性が低くなるほど、またボルトの剛性が高くなるほど大きくなる性格がある。

弾性相互作用は、管フランジ締結体の組立過程において非常に重要な現象であるが、Bibelらの一連の研究以外はほとんど報告されていない。Bibelらは、呼び径の異なる2対の管フランジ、数種類のガスケット、数タイプの締付け手順の組合せを変えて、体系的な管フランジの締付け実験を行い、管フランジ締結体の締付け特性を評価している。（83）また、1回の締付け作業つまり各ボルトを1回ずつ締付けるだけで均一な軸力状態が得られる効率の良いボルト締付け手順を実験的、手法により提案している。（84）同様なことを有限要素解析（85）で用いて検討しているが、ガスケットのモデル化や境界条件などが適切とはいいえない。

管フランジ締結体の締付け作業には、規格化された統一的な手順は存在せず、各企業や作業現場において独自の手順がもちいられている。最近、ASMEから図1.7に示すような管フランジ締結体の締付け指針が提案されている。（86）この指針は非常に多くの作業回数を必要とするため、特に多数のボルトを使用するフランジにおいては実用上問題がある。さらに、Round4においては「ナットが回転しなくなるまで」という曖昧な表現も含まれている。このため、より明確でかつ実用的な作業指針を確立する必要があると考えられる。しかしながら、管フランジとガスケットの組合せは多岐にわたっており、それらの締付け特性は個々の管フランジ締結体で異なる。そのため、実験による評価は困難で数値解析による体系的な検討が不可欠である。

1.2 研究の目的と論文の構成

1.2.1 研究の目的

本研究では、管フランジ締結体のボルト締付け過程および内圧や曲げモーメントなどの荷重が負荷する過程をシミュレーションすることのできる有限要素解析手法を提案し、その手法を用いて管フランジ締結体の締付け特性と力学的特性を体系的に評価
第1章 | 結論
第2章 | 第1部 | トルク法
第3章 | 単ーボルトの締付け特性 | 弾塑性解析
第4章 | 第2部 | 締付け特性
第5章 | 金属平形ガスケットを用いた | 力学的特性
 | 管フランジ締結体の特性評価 |
第6章 | |
第7章 | | ガスケット挙動
第8章 | |
第9章 | |
第10章 | 第3部 | 締付け特性
第11章 | ガスケット非線形挙動を考慮した |
 | 管フランジ締結体の特性評価 |
第12章 | | 扱取取り特性
第13章 | | 力学的特性
第14章 | 結論 |

図1.8 論文の構成

することを目的としている．
締付け特性の評価としては，まず単一のボルトをトルク法で締付ける過程の評価を行う．次に，多数のボルトを1本ずつ締付ける際の弾性相互作用の影響に着目する．力学的特性の評価としては，ボルト初期締付け時および管フランジ締結体に内圧および曲げモーメントが作用する場合について検討を行う．

1.2.2 論文の構成

本論文は14の章により構成され，第1章の緒論と第14章の結論を除く，第2章から第13章を3つの部に分けている．図1.8に構成の概要を記している．

第1部の内容

第1部ではトルクによりボルトを締付ける過程の力学的特性を，軸対称モデルを用いた三次元有限要素解析により評価する．第1部は2つの章により構成されている．

第2章では，締付けトルク開放直後にボルト軸力とねじ部トルクが低下する現象に着目し，ボルト軸力，各トルクおよび各接触面の摩擦係数を連続的に測定することにより，そのメカニズムを明らかにする．また，これらの現象を三次元弾性接触問題として有限要素法により解析する手法を提案し，実験値と比較検討する．
第3章では、ボルト締付け過程の力学的特性を、弾塑性接触問題として有限要素法により評価する。締付けにおけるねじ谷底の塑性域の広がり、ねじ山荷重分担率の変化を明らかにし、ボルト軸力と伸びあるいはナット回転角の関係についても考察する。さらに、有限要素解析手法の塑性域締付け法への適用性について検討する。

第2部の内容

第2部は、管フランジの形状が締結体の締付け特性および力学的特性におよぼす影響を評価することを目的としている。このため、ガスケットを用いない場合と線形弾性挙動を示す金属平形ガスケットを用いた管フランジ締結体を対象としている。解析手法としては、弾性接触問題として三次元有限要素解析を用いている。第2部は3つの章により構成されている。

第4章では、多数のボルトを一本ずつ逐次締付ける場合のボルト軸力変化と締付け完了時における軸力のばらつきを、効率的に精度良く評価できる有限要素解析手法を提案する。また、一度の締付け作業で均一な軸力状態を得るために必要な初期ボルト軸力の算出を試みる。

第5章では、複雑な形状を有する管フランジ締結体のモデリング方法を工夫し、管フランジの形状および寸法が管フランジ締結体の内圧荷負特性におよぼす影響を検討する。

第6章では、内圧と曲げモーメントが同時に作用する管フランジ締結体の力学的特性を評価する。また、金属平形ガスケットの材質と厚さの違いによる影響を検討する。

第3部の内容

第3部では、複雑な挙動を示すジョイントシートガスケットやず卷形ガスケットを用いた管フランジ締結体の締付け特性および力学的特性を評価する。特に、ボルト締付け過程における弾性相互作用に着目し、効率のよい締付け手順や規格化を目指した実用的な締付け指針を検討する。また、管フランジ締結体を開放する際のボルトの抜き取り過程についても考察を行う。第3部は7つの章により構成されている。

第7章では、ジョイントシートガスケットとうず巻形ガスケットを対象とし、複雑な挙動を示す応力-ひずみ関係を同定する手法を提案する。

14
第8章では、複雑な挙動を示すガスケットを用いた管フランジ締結体のボルト締付け過程を評価することのできる有限要素解析手法を提案する。ここで、非線形挙動を示すガスケットを非線形一次元要素として三次元有限要素法に導入している。また、管フランジのボルト締付け実験を行い、解析手法の妥当性を検討する。

第9章では、より実用的なボルト締付け指針の提案につながる基礎研究として、ジョイントシートガスケットを用いた管フランジ締結体を対象に、体系的なボルト締付けシミュレーションを実施する。

第10章では、第9章の結果を考慮して、ジョイントシートガスケットとず卷形ガスケットを用いた管フランジ締結体の締付け指針を提案する。

第11章では、有限要素解析と弾性相互作用係数法を併用することにより、一度の締付け作業で均一な軸力状態を達成することのできる効率のよい管フランジ締結体のボルト締付け手順を検討する。

第12章では、ボルトを抜き取る過程およびボルト欠落時の力学的特性を有限要素解析により体系的に評価する。

第13章では、石綿ジョイントシートガスケットを用いた管フランジ締結体に内圧および曲げモーメントが作用した時の力学的な特性を有限要素解析により評価する。
第1部
単一ボルトの締付け過程における力学的特性の評価
第2章

トルク法によるボルト締付け過程の力学的特性について

2.1 緒言

ボルト・ナットにより被締結体を締付ける場合、大きな呼び径のものを除いてはトルク法がもっとも広く使用されている。トルク法を使用する場合の軸力管理において、もっとも支配的な因子はねじ面とナット座面における摩擦係数であるが、接触面の潤滑状態、表面の加工精度、被締結体の材質などを考慮に入れて、それらの値を精度よく推測することは極めて困難である(7)。また、トルクレンチにより所定の締付けるトルクを与えて、その後締付けトルクを解放し始めると、ねじ部トルクが低下し、軸力もわずかに低下することが知られている(11, 12)。ボルト締付け時におけるこのような挙動を把握することは、トルク法を有効に適用する上で極めて重要であると考えられる。

そこで本章では、締付けトルク解放直後にねじ部トルクおよび軸力が低下する現象に着目し、軸力、トルクおよびねじ面とナット座面の摩擦係数を連続的に測定することにより、そのメカニズムを明らかにし、これらの因子の相互関係を体系的に評価することを目的としている。さらに、締付け前後のトルクと軸力の挙動を三次元弾性接触問題として有限要素法により解析する手法を提案し、実験値と比較検討する。
2.2 実験方法

実験にはメートル並目ねじ M16 のボルトを使用する。グリップ長さ L_f の影響を考慮するために，$L_f=35, 60, 85, 110, 135$mm に対応して 5 種類のボルトを用いる。各グリップ長さにつき，それぞれ 2 本のボルトを用意し，1 本あたり 5 回の計測を行う。なお以下に示す結果は，トルクを付加した直後の測定値を中心に，実験回数の増加に伴って急激にばらつきが小さくなったので，すべて 5 回目の計測値を採用している。ここで各接触面は乾燥状態とし，被締結体の接触面については，5 回の計測ごとに 100
番のサンドペーパーにより磨く。また，$L_f=35$mm については，8 本のボルトを用いて，乾燥状態に加えてナット座面にグリースを塗布した状態で測定を実施した。被締結体は S55C を用いて，各グリップ長さに対応させて図 2.1 に示す形状に加工した。被締結体は，一般に 2 個以上の部品から構成されるが，薄い板を締付けるような場合を除いて，その接触面の影響は無視できると考えられるので，ここでは一体の円筒モデルと仮定している。ボルトに貼り付けるひずみゲージのリード線を取り出す，あるいはポルト頭部を被締結体に固定するために，被締結体の底には 2 つの溝をもうけている。
る。なお、万力に固定するために、側面は一部を平行に加工している。締付けトルクは、六角ナットの外表面にスパナにより与える。トルクは徐々に増加させて、規定のトルク104.5N·mに達した後は緩やかに解放した。接触面摩擦係数、トルクおよび軸力の時間変化を対応させて比較するために、測定項目はボルト軸力 F_b、ねじ部トルク T_1、スパナに与える全トルク T_2 の3点とする。F_b と T_1 は、それぞれ対辺2アクティブゲージ法、4アクティブゲージ法により、直接ボルトにひずみゲージを貼り付けることにより測定した。また、スパナは全トルク T_2 の測定が可能なように特別に作成したもので、スパナの側面に2アクティブゲージ法によりひずみゲージを貼り付けて、T_1 より曲げひずみを測定することにより計測した。ナット座面トルク T_2 は $T_2 = T_1 - T_1$ より算出する。ひずみの測定には動ひずみ測定器を用い、データはオシログラフィックスレコーダにより連続出力した。また、この場合チャートスピードを每秒50mmとして、最小読み取り時間間隔を0.02秒とした。

2.3 実験結果

2.3.1 トルクと軸力の時間変化

締付けトルク解放直前から、締付け完了までの各トルクの変化の様子を図2.2に示す。ここで、矢印の長さはそれぞれのトルクの大きさを表している。なお、締付け開始から完了までの各トルクの間には $T_i = T_1 + T_2$ の関係が成立立つとする。所定のトルクになり、締付けトルクを解放し始めると各トルクは低下し始め、T_2 は途中までなるところがある。さらに締付けトルクを解放していくと、T_2 は符号が逆になる。締付けが完了した時点で T_i は零となり、T_2 は T_1 と釣り合うために $T_2 = -T_1$ となる。この過程に対応した各トルクと軸力の実験値を図2.3に示す。なお、横軸の時間は締付けを開始してからの時間で示しており、例えば $L_f = 35mm$ の場合は、締付け開始8.5秒後にトルクを解放している。$L_f = 35, 135mm$ のいずれの場合も時間に対して同様な変化を示している。
図 2.2 締付けトルクの解放過程における各トルクの変化

2.3.2 軸力と接触面摩擦係数

軸力 F_b , スパナに与える全トルク T_t , ねじ部のトルク T_1 を測定し, さらにナット座面トルク T_2 が算出されると, ねじ面の摩擦係数 μ_1 , ナット座面の摩擦係数 μ_2 はそれぞれ次の式から算出できる (87) .
\(\mu_1 = \tan \left\{ \tan^{-1} \left(\frac{2T_1}{d_2 F_b} \right) - \beta \right\} \cos \alpha' \) \hspace{1cm} (2.1)

\(\mu_2 = \frac{2T_2}{d_2 F_b} \) \hspace{1cm} (2.2)
ここで，β, d2, α' は，それぞれねじのリード角，有効径，ねじ山直角断面におけるねじ山半角である．また，dnはナット座面の摩擦トルクの等価直径で，一般に呼び径 d の 1.3 倍といわれているが (87)，今回はそれぞれの実験から得られる摩擦係数の値を用いて FEM により算出した値 dn = (1.32~1.35)d を採用する．図 2.4 はグリップ長さ Lf が 35, 135mm の場合の乾燥状態における締付け開始から完了までの μ1, μ2, Fb の時間変化を示している．締付け作業の初期の段階では，接触面がなじんでいなかった
図2.5 ポルト軸力と各摩擦係数の時間微分変化

ニ摩擦係数が高く，そのため軸力の増加率は小さくなっている．その後，締付けトルクを増すために接触面がなじみ，摩擦係数はほぼ一定値になる．図中の破線で示した所定のトルクに到達した後，締付けトルクの解放を開始すると，摩擦係数は減少し始める．とくにμ2は，零を通り，符号が反転する．また締付けトルク解放後，わずかがら軸力は上昇している．このこととは，ポルトに蓄えられたねじりのひずみエネルギーが解放されることが主たる原因であると推察される．その間に生じている摩擦

25
係数 μ_1, μ_2 の減少については、図 2.2 に示したナットの回転回転によると考えられる。ここで図中的 μ_{11}, μ_{21} と μ_{12}, μ_{22} は、それぞれ締付けトルク解放直前、締結完了時のねじ面、ナット座面の平均摩擦係数である。図 2.4 に示した特性は、その他のグリップ長さにおいても見受けられた。また、$L_f=35\text{mm}$ の場合について、ナット座面にグリースを塗布した場合、摩擦係数が安定し始めてからの変化が一般に小さかった。

図 2.4 に示した各データが締付けトルクを解放した後、すなわち破線以降どのように変化するか、その時間変化率を図 2.5 に示す。μ_2 の低下率 $d\mu_2/dt$ が最大になったところから dF_b/dt がマイナスの値となり、軸力 F_b の低下がはじまっていることがわかる。したがって軸力の低下には、ナット座面の摩擦係数 μ_2 の影響が大きいと考えられる。

2.4 解析方法

2.4.1 全体剛性方程式

締付けトルク解放前の軸力、ねじ部トルクおよびナット座面トルクの変化率 γ_1, γ_2, γ_3 をポルト、ナット、被締結体の 3 物体、およびねじ面、ナット座面、ポルト頭部座面の 3 接触面からなる弾性接触問題として、有限要素法により解析する(88)。ここで γ_1, γ_2, γ_3 は、それぞれ締付けトルク解放直前の値に対する締付け完了時の値とする。接触問題の解析方法としては、2 体接触問題を対象とする岡本の方法(89)を、3 物体 3 接触問題に拡張した手法を用いる。全体剛性方程式は次のようになる。

$$
\begin{bmatrix}
K_b & 0 & 0 & K_{bC_1} & 0 & K_{bC_3} \\
0 & K_n & 0 & K_{nC_1} & K_{nC_2} & 0 \\
0 & 0 & K_f & 0 & K_{fC_2} & K_{fC_3} \\
K_{C_{1b}} & K_{C_{1n}} & 0 & K_{C_1} & 0 & 0 \\
0 & K_{C_{2n}} & K_{C_{2f}} & 0 & K_{C_2} & 0 \\
K_{C_{3b}} & 0 & K_{C_{3f}} & 0 & 0 & K_{C_3}
\end{bmatrix}
\begin{bmatrix}
u_b \\ u_n \\ u_f \\ R_1 \\ R_2 \\ R_3
\end{bmatrix}
=
\begin{bmatrix}
Q_b \\ Q_n \\ Q_f \\ \delta_1 \\ \delta_2 \\ \delta_3
\end{bmatrix}
(2.3)
$$

ここで、$[K_b]$, $[K_n]$, $[K_f]$ はそれぞれポルト、ナット、被締結体の剛性マトリックスであり、その他のマトリックスは接触に関するマトリックスである。また、u_b, Q_b などは、それぞれ節点変位と等価節点力である。δ_i は接触節点の初期不整量であり、R_i は接触状態により変化する等価接触力である。
2.4.2 解析条件

トルク法による締付け過程は三次元問題となる。ここでは、リード角の影響は圧力側フランク上にある節点に対してのみ考慮する。その結果、軸対称問題と同様の二次元モデルを用いて、各節点の自由度を3とすることにより三次元解析を実施することが可能となる(30)。計算は、締付けトルク解放までの締付け過程と、解放後の状態を別々に解析することにより、全体の締付け過程を評価する。前者については、ナット側面の円周方向分布力により締付けトルクを与える。後者は、締付けトルク解放前に対応した解析において得られた締結体各部のひずみを、初期ひずみとして与えることにより締付け完了時の状態を解析し、軸力およびトルクがどの程度解放されるか求め る。解析に用いる摩擦係数の値は、図2.4において示した様にモデル化して、解析の第1段階では締付けトルク解放直前の値 μ_{11}, μ_{21} を、第2段階では締付け完了時の値 μ_{12}, μ_{22} を用いる。なお、半径方向の摩擦係数は、円周方向と同じ値であると仮定する。

2.4.3 締付け過程における接触状態

接触状態には、離隔、すべり、半径方向すべり円周方向固着、円周方向すべり半径方向固着、固着の5つがある。締付け過程においては、ねじ面、ナット座面、ボルト頭部座面のいずれの接触面においても、対応する接触節点が離隔しない限り、円周方向の接触状態はつねにすべりであると考えられる。しかしながら、締付けトルクを解放後は、接触面の円周方向に相対すべきが生じない場合に考えられる。このため、上記の5種類の接触状態が必要となる。なお、接触面ではクーロンの摩擦則が成立すると仮定する。

2.4.4 解析モデル

メートル並目ねじM16を解析対象とし、実験と同様に5種類のグリップ長さL_fに対応したモデルを作成する。モデルの要素分割の一例（$L_f=60\text{mm}$）を図2.6に示す。締結部を構成する材料のヤング率は200GPa、ポアソン比は0.3一定とする。
図 2.6 有限要素モデル (M16, $L_f=60$mm)

2.5 解析結果

2.5.1 摩擦係数の影響

締付けトルク解放直前のねじ面とナット座面の摩擦係数の比 μ_{11}/μ_{21} に対する、軸力の変化率 γ_1 の関係を図 2.7 に示している。ここでグリップ長さ L_f は 35mm 一定としている。μ_{11}/μ_{21} の値が 1 より小さくなるあたりから、軸力の低下がわずかに顕著になっており、軸力低下に対しては μ_{11} より μ_{21} の影響がやや大きいという傾向を示している。μ_{11}/μ_{21} が 1 より小さい範囲において、FEM と実験結果の差がやや大きく

<table>
<thead>
<tr>
<th>Node</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt</td>
<td>626</td>
</tr>
<tr>
<td>Nut</td>
<td>335</td>
</tr>
<tr>
<td>Plate</td>
<td>179</td>
</tr>
</tbody>
</table>
なっているのは，\(\mu_{11} \) と \(\mu_{21} \) に対応する締付けトルク解放後の摩擦係数の値のばらつきが大きいことが原因の一つであり，さらにその結果，\(\mu_{11}/\mu_{21} \) に対する \(\gamma_1 \) の変化が不連続になっていると考えられる．図 2.7 に示した結果と，図 2.5 で示したナット座面の摩擦係数の低下率が最大になるところから軸力 \(F_b \) の低下が始まるという実験結果を考えることで，軸力の変化率 \(\gamma_1 \) をナット座面の摩擦係数により評価する．図 2.8 は，ねじ面とナット座面の摩擦係数の変化率 \(\zeta_1 = \mu_{12}/\mu_{11} \)，\(\zeta_2 = \mu_{22}/\mu_{21} \) と，締付けトルク解放後の軸力の変化率 \(\gamma_1 \) とトルクの変化率 \(\gamma_2 \) の関係を示している．いずれの場合も，摩擦係数の変化率が大きいほど，軸力，各トルクの変化率は大きくなっている．また，実験値と解析値が同様な傾向を示していることから，本研究で提案した解析手法が妥当であるといえる．

2.5.2 グリップ長さの影響

図 2.9 は，軸力 \(F_b \) とねじ部トルク \(T_1 \) の変化率 \(\gamma_1 \) に対するグリップ長さ \(L_f \) の影響を示している．なお，グリップ長さ \(L_f \) は呼び径 \(d \) で除して無次元化して示している．図より，\(L_f \) が小さくなるほど \(\gamma_1 \) および \(\gamma_2 \) の値がわずかに小さくなっている．\(\gamma_2 \) に関しては緩やかではあるがほぼ直線的に変化している．\(\gamma_1 \) の値の変化は数％以内と小さいが，グリップ長さが小さくなると，変化の割合がやや顕著になっている．なお，
図2.8 ボルト軸力と各トルクの変化率（$L_f=35\text{mm}$）

実験値に比較してFEMにより得られたγ_1の値は、全体にやや高めに評価されているが、グリップ長さの変化に対する傾向は一致している。
図2.9 ポルト軸力とねじ部トルクの変化率に対するグリップ長さの影響

2.6 考察

締付けトルクの解放を開始しても軸力がわずかながら増加し、その後低下するという現象について、その原因の一つの考え方を以下に示す。ナットに与えられる締付けトルクが増加すると、それに応じてポルトに貯えられるひずみエネルギーの値も増加する。つぎに、所定の締付けトルクになり、トルクを解放すると、ポルトは貯えら
図 2.10 ひずみエネルギーを評価するためのボルトの段付き円柱モデル

図 2.11 ボルトの全ひずみエネルギーの変化率
図2.12 ポルトの全ひずみエネルギーの低下量に占める軸力およびねじ部トルクによるひずみエネルギーの低下量の割合

れたひずみエネルギーを解放しようとして、締付け時とは反対方向に戻り回転しようとする。この戻り回転は、ナットが回転しない場合は軸力を増加させる方向の回転である。事実締付けトルク解放直後にナットがほとんど戻り回転しない間は、軸力がわずかに増加する。しかしながら、締付けトルクの解放が進むと、ナット座面トルクがねじ部トルクと釣り合おうとして作用方向が逆になる。その途中の過程で、図2.2の中央の図に示したように摩擦係数の絶対値が小さくなるところがあり、その場合にナット座面が円周方向にすべり回転する。その結果、ねじ面においても局部的に相対すべリが生じ、わずかながら軸力が低下すると推察される。

また、締付けトルク解放後の軸力とトルクの低下には、ポルトに蓄えられているひずみエネルギーが大きく影響していると考えられる。そこで、締付けトルク解放直前と締付け完了時のひずみエネルギーの関係について考察する。図2.10のようにポルトを(a) はめ合いねじ部、(b) 遊びねじ部、(c) 円筒部の3つの部分からなるねじりと引張りを同時に受ける段付き円柱と考える。ここで、L1はナットの高さ、dは呼び径、d2は有効径である。(a)部にかかる軸力とトルクは、ナット頂面からの距離により変化するので、ナット頂面から任意の距離におけるポルト軸力を与える式(87)を用い、軸力とトルクにより生ずるひずみエネルギーを算出する。締付けトルク解放直前のポルト
の全ひずみエネルギーを U_1，締付け完了時の全ひずみエネルギーを U_{12} とし，この比 U_{11}/U_{12} のグリップ長さの関係を図 2.11 に示す。塗りつぶしてある点は FEM による解析結果から算出した値である。両者とも同様の傾向を示しており，グリップ長さが小さいほど変化が大きくになっている。また図 2.12 は，簡易モデルを用いてボルトの全ひずみエネルギーの低下量 ΔU_1 に占める，軸力およびねじ部トルクによるひずみエネルギーの低下量 ΔU_{Fb}，ΔU_{T1} の割合を計算した結果である。これらの比に対するグリップ長さの影響は比較的小さく，ΔU_1 のうち約 70%が ΔU_{T1} になっている。以上の結果から，解放されるひずみエネルギーは，軸力に起因する成分よりも，トルクに関連する成分が支配的であるといえる。したがって，グリップ長さが変化した場合，軸力の変化に比べてねじ部トルクの変化が大きく現れると考えられる。

2.7 結言

ボルト・ナットを用いてトルク法により被締結体を締付ける場合について，締付けトルク解放前後の力学的特性を実験および数値解析により検討した結果，以下に示す結論を得た。

1. 締付け開始から完了状態まで軸力，トルク，接触面摩擦係数を連続的に同時測定することにより，これらの因子の相互関係を明らかにした。
2. 締付けトルク法所定の値に到達した後，ナットに付加しているトルクを解放すると，ねじ面とナット座面の摩擦係数はただちに低下し始めるが，軸力はわずかに上昇した後に低下する。また，軸力はナット座面の摩擦係数の低下率が最大になったところから低下を開始する。
3. 締付けトルク解放前後のトルクおよび軸力の低下率を，三次元弾性接触問題として有限要素法により解析する手法を提案し，実験結果と比較することによりその妥当性を確認した。
4. 軸力とナット座面トルクの変化に対してはナット座面の摩擦係数，またねじ部のトルクの変化に対してはねじ面の摩擦係数の影響が大きい。
5. グリップ長さが小さいほど，締付けトルク解放前後の軸力とねじ部トルクの変化率は大きくなる。

34
第3章

ボルト締付け過程の弾塑性有限要素解析

3.1 緒言

ボルトは複雑な形状をしており、ねじ谷底において高い応力集中を示す(90)。そのため、比較的低い軸力においても、局部的緊張が生じていると考えられる。さらに近年では、ボルトの性能を最大限に活用することを目的として、塑性域締付け(18)により高い軸力まで締付ける方法が用いられるようになった。以上の点から、ボルト締結体の力学的特性を弾塑性問題として評価することは、極めて重要であると考えられる。しかしながら、あらゆるねじ部の特性を実験的に評価することは困難であり(91)、解析による評価が不可欠となる。

一般に、ボルトの締付けは、ナットまたはボルト頭部にトルクを与えて行われることが多い。しかしながら、これまで報告されているボルト締付け過程の弾塑性解析の多くは、ボルトが軸力を受ける場合を対象としており(33, 34, 35)、ボルトに作用するトルクを考慮した解析(21, 92)は少ないようである。

本章では、トルクによるボルト締付け過程の力学的特性を、弾塑性接触問題として有限要素法により評価することを目的としている。具体的には、締付けにおける塑性域の広がり、ねじ山荷重分担率の変化を明らかにし、ボルト軸力と伸びあるいはナット回転角の関係についても考察する。さらに、本研究における有限要素解析手法の塑性域締付け法への適用性について検討する。解析手法の妥当性は、締付け実験を実施することにより確認している。
3.2 解析方法

3.2.1 軸対称モデルを用いた三次元解析

ポルトのはめ合いねじ部をモデル化する場合，計算機容量と計算時間および有限要素メッシュ作成労力等の観点から，軸対称モデルが広く用いられている．しかしながら，トルクによるポルト締付け過程は三次元問題となる．福岡らは(30)，ねじ面に働く力の関係にのみリード角を考慮したモデルにより三次元弾性問題として解析を実施したが，本研究ではその手法を弾塑性問題に応用する．ここで示したモデルでは，各節点の自由度は3となるが，要素分割は二次元的である．

本手法では，次に示す円筒座標系におけるひずみ速度-変位速度関係を用いている．

\[
\{\varepsilon_r, \varepsilon_\theta, \varepsilon_z, \gamma_{\theta r}, \gamma_{\theta z}, \gamma_{z r}\}^T = \begin{bmatrix}
\frac{\partial u}{\partial r}, \frac{\partial u}{\partial \theta}, \frac{\partial u}{\partial z} - \frac{\partial \phi}{\partial r}, \frac{\partial \phi}{\partial \theta}, \frac{\partial \phi}{\partial z} + \frac{\partial \theta}{\partial z}
\end{bmatrix}^T
\] (3.1)

ここで，\(\dot{u}, \dot{v}, \dot{w}\) はそれぞれr, \(\theta\), z 方向の変位速度である．式(3.1)では，ポルト締付け時における各変位速度成分は円周方向に変化しないと仮定して，円周方向座標 \(\theta\)に関する微分の項は省略されている．その結果，軸対称モデルを用いた三次元解析が可能となる．

3.2.2 接触問題

接触条件を定式化する手法としてはラグランジュの未定乗数法(89)およびペナルティ関数法(93, 94, 95)が代表的である．本研究では，非線形問題を増分法として扱い，各増分段階において連立一次方程式を逐次解くので，接触条件式を組み込んでも方程式の次元数が増加しないペナルティ関数法を採用している．

接触面に発生するせん断力は，クーロンの摩擦則に従うと仮定する．接触節点における接触状態については，問題が三次元であるために，接触面に垂直な方向を \(z\) 軸と考えて，「離隔」，「すべり」，「半径方向すべり・円周方向固着」，「半径方向固着・円周方向すべり」および「固着」の5種類を考慮する．

トルクによるポルトの締付けは，ナットを回転させることにより行われる．そこで，ナットの回転によりポルト軸力を生じさせるために，はめ合いねじ部の圧力側フランクにおける接触節点に対して次の座標変換を行い，リード角 \(\beta\) の影響を考慮する．
図 3.1 ねじ山圧力側フランク上の接触点の座標変換

\[
\begin{bmatrix}
 r \\
 \theta \\
 z
\end{bmatrix} =
\begin{bmatrix}
 \cos \alpha' & 0 & -\sin \alpha' \\
 -\sin \beta \sin \alpha' & \cos \beta & -\sin \beta \cos \alpha' \\
 \cos \beta \sin \alpha' & \sin \beta & \cos \beta \cos \alpha'
\end{bmatrix}
\begin{bmatrix}
 r^{**} \\
 \theta^{**} \\
 z^{**}
\end{bmatrix}
\]

ここで，\(\alpha' \)はねじ山半角，\(\beta \)はリード角，そして \(r - \theta - z \)と \(r^{**} - \theta^{**} - z^{**} \)は，それぞれ座標変換前後の円筒座標系を示しており，\(z^{**} \)は圧力側フランク面に垂直な方向となる．図3.1は，式(3.2)による座標変換を模式的に示したものである．

3.2.3 解析条件

弾塑性解析にはPrandtl-Reussの構成式(96)を用いており，材料特性および接触問題により生ずる非線形性は，増分法により線形化して扱っている．解析に必要な材料特性は，後述する締付け実験に使用した強度区分8.8のメートル並目ねじM12のボルトから試験片を削り出し，その単軸引張り試験により決定している．ここで，単軸引張り下での真応力 \(\sigma \)と対数ひずみ \(\varepsilon \)の関係は，線形硬化弾塑性体を仮定し，初期降伏応力 \(\sigma_y = 790 \text{MPa} \)，塑性の接線係数 \(H' = 2700 \text{MPa} \)とした．また，ヤング率とポアソン比は，それぞれ200GPaと0.3とし，ナットと被締結体に対してもボルトと同じ材料定数を使用している．
図 3.2 境界条件

図 3.2 に境界条件を示す。締付けトルクは、ナット外表面節点の円周方向一様変位として与え、ボルトが回転しないように、ボルト頭部の外表面節点の円周方向変位を拘束している。また、被締結体のボルト頭部座面側の節点は全方向に拘束している。

接触面における摩擦係数は、ねじ面の値 \(\mu_1 \) を 0.0 から 0.4 まで変化させ、ナット座面とボルト頭部座面における摩擦係数は 0.1 で一定と仮定している。

3.2.4 有限要素モデル

解析はおもにメートル並目ねじ M12 とするが、呼び径の違いによる影響を検討するために、M24 と M36 についても解析を実施する。したがって、特に断らない限り解析結果は M12 に対するものを示している。図 3.3 に本解析で使用した有限要素モデルを示している。遊びねじ部のねじ山数は、いずれのモデルにおいても 10 山とし、被締結体外径は呼び径 \(d \) の 2.5 倍、グリップ長さ \(L_f \) は呼び径 \(d \) の 8 倍としている。また要素は、Crossed Triangles要素を使用している。
図3.3 有限要素モデル (M12)
3.3 実験方法

解析の妥当性を確認するため、ボルトの締付け実験を実施する。実験においては、ボルト軸力 F_b、ナット座面トルク T_2、締付けトルク T_t、ボルト伸び δ を測定し、ボルト軸力 F_b とボルト伸び δ の関係について解析結果と比較する。

対象とするのは、強度区分 8.8(S45C) のメートル並目ねじ M12 である。図3.4に使用したボルトの寸法を示している。ここで、グリップ長さ L_f はボルト呼び径 d の8倍の96mmとしているため、遊びねじ部長さは16mmとなる。

また図3.5には、実験装置を示している。ロードセルとして使用する被締結体はS55C材で作成し、その両端には厚さ10mm、直径70mmのフランジを設けている。下側のフランジは固定用で、4本のボルトでベースに固定されている。上側のフランジは、ナット座面トルク T_2 の測定に用いるひずみゲージの校正時に使用する。ロードセル中心部の外表面には、ボルト軸力 F_b とナット座面トルク T_2 の測定用ひずみゲージを張り付け、あらかじめ校正を行っている。ボルトの伸び δ は、ボルト両端に取り付けた変位計（共和電業：DTH-A-10）の相対変位量として求める。またナットの締付けには、自作した長さ1mのスパナを使用し、そのスパナに張り付けたひずみゲージにより、締付けトルク T_t を測定している。

ねじ面の摩擦係数 μ_1 とナット座面の摩擦係数 μ_2 は、それぞれ次式を用いて算出する。

$$\mu_1 = \tan \left\{ \tan^{-1} \left(\frac{2T_1}{d_nF_b} \right) - \beta \right\} \cos \alpha'$$ (3.3)

$$\mu_2 = \frac{2T_2}{d_nF_b}$$ (3.4)
図3.5 実験装置

ここで T_1 は、$T_1 = T_t - T_2$ により算出されるねじ部トルク、β はリード角、d_2 は有効径、α' はねじ山直角断面におけるねじ山半角である。また d_n は、ナット座面の摩擦トルクの等価直径であり、呼び径 d の 1.3 倍（87）とする。また、ねじ面の摩擦係数 μ_1 の影響を考察するため、各接触面に塗布する潤滑剤を変え、$\mu_1 = 0.05 \sim 0.15$ の範囲で締付け実験を行った。
図 3.6 ボルト軸力と伸びの関係

図 3.7 ボルト軸力とナット回転角度の関係

3.4 解析結果

3.4.1 ボルト軸応力と伸びおよびナット回転角の関係

図 3.6 に、締付け過程におけるボルト軸応力 σ_b とボルトの伸び δ の関係を、ねじ面の摩擦係数 μ_1 を 0.0 から 0.4 まで 0.1 ずつ変化させて示している。ここで、軸応力はボルト軸力 F_b を呼び径 d を直径とする断面積で除した値としている。いずれの μ_1 値に対しても、締付け初期の弾性範囲においてほぼ同じ値を示しているが、摩擦係数
3.8 ボルト軸応力と伸びの関係に対する解析結果と実験結果の比較

が大きいほど降伏の影響が現れるボルト軸応力が小さくなっている。また、摩擦係数
\(\mu_1 \) が大きいほど、降伏開始後の傾きが小さくなる傾向が見られる。図3.7は、図3.6に対応してボルト軸応力 \(\sigma_b \) とナット回転角度 \(\theta \) の関係を示している。図3.6とはほぼ同様な変化を示すが、弾性部分における傾きが \(\mu_1 \) の値によってわずかに異なることが分かる。また図3.8では、ボルト軸応力 \(\sigma_b \) とボルトの伸び \(\delta \) の関係について、実験結果と解析結果を比較している。ここでは、実験に対応してねじ面の摩擦係数 \(\mu_1 \) が0.06と0.125の場合を示している。いずれの摩擦係数についても、実験値と解析値は比較的よく一致しており、本研究で用いている解析手法の妥当性が確認できる。

3.4.2 塑性域の広がり

図3.9は、締付け過程の進行にともなう塑性域の広がりを示している。ここで図3.9(a)は、ボルトが軸力のみを受ける場合であり、(b)(c)はそれぞれねじ面の摩擦係数 \(\mu_1 = 0.2 \) および \(\mu_1 = 0.4 \) の場合の解析結果である。図中にボルト軸応力の大きさを示しており、塑性域の広がりは黒く塗りつぶして示している。塑性変形は、いずれの場合もめ合いねじ部のナット座面に近いボルトねじ谷底から開始している。その後、軸応力の増加にともなって降伏域が広がっており、最終的に遊びねじ部中心付近において、塑性域が
(a) Under pure tension ($\mu_1 = 0.1$)

(b) In tightening ($\mu_1 = 0.2$)

(c) In tightening ($\mu_1 = 0.4$)

図 3.9 ボルト締付け過程の塑性域の広がり
ボルト中心にまで達することがわかる。また、図3.9(a)のボルトが軸力のみを受ける場合、各ねじ谷底から発生した塑性域は、約45度の方向へ広がっているが、図3.9(c)の\(\mu_1 = 0.4\)の場合、塑性域はねじ谷底からボルト中心部へ向かって進み、図3.9(b)の\(\mu_1 = 0.2\)の場合には、図3.9(a)と(c)の中間的な塑性域の広がりを示している。このことは、ねじ面の摩擦係数\(\mu_1\)が大きいほど、同じ軸応力に対してねじ部トルク\(T_1\)が大きくなり、ねじ谷底付近の相当応力に対するせん断応力\(\tau_{\theta z}\)の寄与が大きくなったためであると考えられる。

また、図3.9のいずれの場合も、ナットの降伏はほとんど確認されていない。ナット座面の半径方向の摩擦係数については、その値が小さくなるほどナットが外側に変位し、ナット座面に近いねじ山付近が降伏しやすくなるという傾向が確認された。

3.4.3 各応力成分の変化

図3.10は、ねじ面の摩擦係数\(\mu_1\)が0.2の場合について、図3.9(b)に細線で示したボルト遊びねじ部断面の半径方向応力分布を示したものである。トルク法によるボルト締付けでは、軸方向応力\(\sigma_z\)とせん断応力\(\tau_{\theta z}\)が、相当応力\(\bar{\sigma}\)に大きく寄与する。そこで図3.10では、ボルト軸応力の変化に対して\(\bar{\sigma}, \sigma_z, \tau_{\theta z}\)の半径方向の分布パターンがどのように変化するかを示している。図中の記号は軸応力のレベルを表しており、いずれも図3.10(c)に示した軸応力に対応している。

図3.10より、ボルト軸応力が低く塑性変形が生じていない状態では、\(\sigma_z\)は表面付近において高い値を示し、それ以外の部分ではほぼ一様な値を示している。\(\tau_{\theta z}\)については、中心から表面に向かって高くなっている。その結果、相当応力\(\bar{\sigma}\)の値は、ボルト中心から表面側へ向かうにつれて徐々に増加し、表面部分で高い値を示している。図には示していないが、このようなボルト内部における\(\bar{\sigma}\)の分布パターンは、\(\tau_{\theta z}\)に大きくなる影響されるので、\(\mu_1\)が大きくなるほど半径に対する\(\bar{\sigma}\)の増加率は大きくなる。

さらにナットを締付けると、図3.9に示したように塑性域はねじ谷底表面から生じはじめ、ボルト内部へ広がっていく。そのとき、\(\tau_{\theta z}\)の最大値はボルト内部へ移動し、\(\sigma_z\)は\(\tau_{\theta z}\)の小さなボルト中心部において高くなっている。この傾向は、\(\mu_1\)が大きくなるほど顕著となる。
图 3.10 綁付け過程における遊びねじ部の半径方向の応力分布の変化 ($\mu_1 = 0.2$)
3.4.4 ねじ山荷重分担率の変化

図3.11は、締付け過程の進行にともなうねじ山荷重分担率の変化を示す。ねじ山は、ナット座面から頂面へ向かって番号を付けており、締付けが進むと、第1ねじ谷底付近の塑性域の広がりによる剛性低下のため、第1ねじ山の荷重分担率が低下している。その後、第1ねじ山で受け持つことができなくなった荷重は、第3ねじ山以降のねじ山に比較的均等に分散されていくことが分かる。また、第2ねじ山の荷重分担率は、軸応力が増加してもほとんど変化していない。

3.4.5 ボルト呼び径の影響

図3.12は、ボルト呼び径の違いが塑性域の広がりにおよぼす影響を示している。ここで、ねじ面の摩擦係数 μ_1 は0.2で、M12の図3.9(b)に対応している。図3.9(b)と図3.12から、同じ軸応力値にもかかわらず、呼び径が大きくなるほど塑性域の広がりが小さくなっていることが分かる。この原因としては、呼び径dが異なるとねじ山周辺の形状が非相似になる、すなわち呼び径の増加にともなってピッチpに対する比p/dが小さくなることによると考えられる。そこで、ボルト円筒部の応力ではなく、ねじ谷底径で定義した断面積に対する軸応力 $\sigma_r=683$MPaを等しくすることにより比較する。この時の塑性域分布を、図3.13に示している。図中に、図3.9、図3.12と同様、ボルト円筒部で定義した軸応力値 σ_bを示している。図3.13より、ねじ谷底断面における
図3.12 塑性域の広がりにおよぼすボルト呼び径の影響 ($\mu_1 = 0.2$)

図3.13 塑性域の広がりにおよぼすボルト呼び径の影響 ($\mu_1 = 0.2, \sigma_r = 683\text{MPa}$)
3.5 考察

ポルト軸力を降伏点を超えて締付ける方法を「塑性域締付け法」と呼び、最近その有効性が確認されつつある（16）．この方法を使用する場合、降伏締付け軸力の評価が重要となる（97）．ここでは、本研究で用いた解析手法の塑性域締付け法に対する適用性を検討するため、降伏締付け軸力を評価して、その結果を実験値と比較する．

降伏締付け軸力は、ひずみは全て遊びねじ部において生ずると仮定し（97）、ポルトの永久ひずみが0.2%の点に対応する耐力から算出する．遊びねじ部長さは16mmであるため、永久ひずみ0.2%に対応するポルトの伸びは0.032mmとなる．したがって、図3.6に示した各μ_1に対するσ_b, δ曲線と図中の細線の交点から降伏締付け軸力が求められる．ここで、降伏締付け軸力とその時のねじ部トルクT_1の関係、すなわち相互作用曲線を図3.14に示す（97）．ねじ部の相互作用曲線から、ねじ面の摩擦係数μ_1が大きくなるほど、同じ軸力を得るのに必要なねじ部トルクT_1が大きくなるので、降伏締付け軸力の値が低下することがわかる．また、実験では$\mu_1=0.05\sim0.15$となったが、その

図3.14 ポルト軸力とねじ部トルクの相互作用曲線

平均応力が等しいにも関わらず、呼び径が小さいほど塑性域がポルト中心まで広がっていることがわかる．このことは、ポルト呼び径が大きいほどねじ谷底付近の相当応力値に対するせん断応力の割合が低くなることに起因していると考えられる．
値も図中に示している．実験値と解析値は比較的よく一致しており，ポルトの降伏締付け軸力評価に対する本解析手法の有効性が確認できる．

3.6 結言

トルク法によるポルト締付け過程の力学的特性を，弾塑性接触問題として有限要素法により評価した結果，以下の結論を得た．

1. トルク法によるポルト締付け過程を，二次元形状モデルを用いた三次元弾塑性接触問題として解析する手法を提案した．また，ポルトの締付け実験を実施して，ポルト軸力と伸びの関係について解析結果と比較することにより，その妥当性を確認した．

2. ポルトの塑性変形は，ナット座面に近いはめ合いねじ部ねじ谷底から発生し，摩擦係数が小さい場合は半径方向に対して45度の方向へ，また摩擦係数が大きい場合はポルト中心側へ向かって広がり，最終的には遊びねじ部中心付近でポルト中心まで達することを確認した．

3. ねじ山荷重分担率は，ポルトの降伏が開始すると，第1ねじ山の分担率が低下し始め，第3ねじ山よりナット頂面側のねじ山の分担率は比較的均等に上昇し，第2ねじ山の値はほとんど変化しないことを確認した．

4. ポルト軸応力と，ポルトの伸びあるいはナット回転角の関係に対するねじ面の摩擦係数の影響を示した．摩擦係数が高いほど，降伏現象が低いポルト軸応力の段階から現れ，また降伏後の変化率が小さくなった．

5. ポルト呼び径が大きいほど，同じ軸応力値に対する塑性域の広がりが小さいことを示した．

6. 塑性域締付け法において重要なポルトの降伏締付け軸力の評価を行い，実験値と比較することにより本解析手法の塑性域締付け法への適用の可能性を確認した．
第Ⅱ部
金属平形ガスケットを用いた管フランジ
締結体の特性評価
第4章

管フランジ締結体のボルト締付けシミュレーション

4.1 緒言

ボルト・ナットを用いて締結体を締付ける方法としては、トルク法、張力法、熱膨張法等がある。このような締付け方法において、所定のボルト軸力を得るために問題となるのは、各締付け方法に対して接触面の摩擦係数(7)，有効張力係数(22)，ボルトの加熱方法(26)などであり、従来から多くの研究が報告されている。しかしながら、管フランジなど実際の構造物では、多数のボルトが使用されるので、トルク法で締付けた場合、最初のボルトを所定の軸力で締付けることは可能でも、引き続いて他のボルトを締付けていくと、最終的に各ボルトに残留する軸力は弾性相互作用の影響により目標とする軸力と異なった値になることが知られている。

Bibelらは(84)，締付け実験を数回くり返すことによって得られるデータを用いて、各ボルトを1回ずつ、すなわち1ステップの締付けによって高い精度でボルト軸力を与える手法を提案している。しかしながら、この手法では締結体の寸法が変わるたびに予備実験を行わなければならない。また Weberらは(85)，線形有限要素法を用いて、締付け完了後の各ボルトの軸力が一定になるような初期軸力の算出を試みている。その結果、最終的に得られるすべてのボルト軸力の平均値については、所定の軸力の99%になることが示されている。しかしながら、個々のボルト軸力のばらつきは約20%とかなり大きく、また計算機容量等の観点から、合計20本のボルトを一度に4本ずつ締付けるという仮定をおいており、必ずしも実用性の高い手法とはいえない。
そこで本章では、より汎用性の高い手法の確立を目的として、管フランジを任意の数のボルトで締付ける場合について、ボルトを逐次締付けた場合の軸力の変化と締付け完了時における軸力のばらつきを、効率的に精度よく評価できる手法を提案する。解析手法としては、三次元弾性接触問題として有限要素法を適用する。具体的には、各ボルトに等しい軸応力を与えて逐次締付けた場合に生じるボルト軸応力のばらつきと、締結完了時に均一なボルト軸応力を得るために必要な初期ボルト軸応力を算出する。前者においては、フランジ座面形状、管フランジの呼び径の影響を、後者では、一般に用いられる数回のステップにより締付け作業を完了する場合を扱う。また、実験を行うことにより解析手法の実用性を検討する。対象とするのは、JIS B 2238 呼び圧力 40K、呼び径 50 のハブ付き一体形フランジであり、ガスケットとして厚さ 3mm の純アルミ材の金属平形ガスケットを用いている。

4.2 解析方法

4.2.1 接触問題

接触問題の解析方法としては、従来の手法（88）を、三次元多体弾性接触問題として多数のボルトを逐次締付けた場合の解析が可能なように拡張する。また接触面に発生するせん断力は、クーロンの摩擦則に従うと仮定する。接触節点における接触状態については、問題が三次元であるために、接触面に垂直な方向を z 軸と考えて「離隔」、「すべり」、「x 方向すべり・y 方向固着」、「x 方向固着・y 方向すべり」および「固着」の 5 種類を考慮する。

4.2.2 全体剛性方程式

ボルトのはめあいねじ部は幾何学的に非常に複雑な形状をしており、そのことがねじ部の応力解析を困難にしている。しかしながら、本研究における主な解析項目は締付けボルトのねじ部の応力分布ではなく、ボルト軸応力である。そこで、解析の効率化を図るためにボルトとナットを単一の弾性体として扱う。管フランジ締結体の対称性を考慮し半分のみをモデル化する。この場合、多数ボルトをまとめて 1 体とみなすと、解析はボルト・ナット、管フランジ、ガスケットの 3 体、およびボルト頭部座
面，ガスケット座面の2接触面からなる3物体2接触面問題に帰着される。この場合，
全体剛性方程式は次のようになる。

\[
\begin{bmatrix}
 K_e & 0 & 0 & K_{eC1} & 0 \\
 0 & K_f & 0 & K_{fC1} & K_{fC2} \\
 0 & 0 & K_g & 0 & K_{gC2} \\
 K_{C1e} & K_{C1f} & 0 & K_{C1} & 0 \\
 0 & K_{C2f} & K_{C2g} & 0 & K_{C2}
\end{bmatrix}
\begin{bmatrix}
u_e \\ u_f \\ u_g \\ R_1 \\ R_2
\end{bmatrix} =
\begin{bmatrix}
Q_e \\ Q_f \\ Q_g \\ \delta_1 \\ \delta_2
\end{bmatrix}
\] (4.1)

ここで，\([K_e]，[K_f]，[K_g]\)はそれぞれ，多数ボルトを一体化とみなしたボルト・ナット
等価モデル，管フランジ，ガスケットの剛性マトリックスである。\([K_e]\)はn本のボルトを使用した場合，j番目のボルト・ナットモデルの剛性マトリックスを\([K_{ej}]\)と言うと,

\[
[K_e] =
\begin{bmatrix}
 K_{e1} & 0 & 0 & 0 \\
 0 & K_{e2} & 0 & 0 \\
 0 & 0 & K_{e3} & 0 \\
 0 & 0 & 0 & K_{en}
\end{bmatrix}
\] (4.2)

となる。各物体の剛性マトリックス以外のマトリックスは接触に関するマトリックス
である。また，\(u_e，Q_e\)などは，それぞれ節点変位と等価節点力である。\(\delta_i\)は接触節点
の初期不整量であり，\(R_i\)は接触状態により変化する等価節点力である。ここでiは接
触面番号であり，1がボルト頭部座面，2がガスケット座面を示している。\(\delta_i\)と\(R_i\)は，
各々のボルトについて考えると以下のようになる。

\[
\{\delta_i\} =
\begin{bmatrix}
 \delta_{11} \\
 \delta_{12} \\
 \vdots \\
 \delta_{1n}
\end{bmatrix},
\{R_i\} =
\begin{bmatrix}
 R_{11} \\
 R_{12} \\
 \vdots \\
 R_{1n}
\end{bmatrix}
\] (4.3)

\(\delta_{ij}，R_{ij}\)はそれぞれj番目のボルトに対する接触節点の初期不整量と等価節点力である。

解析において，式(4.1)中の\([K_e]，[K_f]，[K_g]\)，および全体剛性マトリックスの左下
三角部分にある接触に関するマトリックス\([K_{C1e}]\)などは，接触状態を定めるための反
復計算を通じて一定である。そのため，これらのマトリックスは連立一次方程式を解
く過程において一度分解しておけばよいことになる。さらに，各ボルトを逐次締付け
ていく過程において変化するのは\(\delta_i\)のみであり，効率的に計算を実施できる。

また，ボルトに逐次軸力を与えていく過程において，あるボルトを締付けると，弾
性相互作用によってそのボルトより後に締付けられるボルトの接触節点が全て離す
図4.1 有限要素モデル

ることがある。この場合、そのボルトの剛体変位は拘束されないので、剛体マトリックスが特異となる。そこで、福岡が提案しているレギュラリティパラメータ（88）を、ボルトに対してのみわずかに大きくすることにより、この状態を回避している。

4.2.3 解析モデル

有限要素モデルの一例を図4.1に示している。とくに断らない限り、図に示した8本のボルトで締付ける大平面座モデルを解析の対象とする。メッシュ分割については、図4.1に示したモデルよりさらに細かいメッシュで解析を実施することにより、本研究で用いたモデルで十分な精度が得られることを確認している。各物体のヤング率とポアソン比はそれぞれ200GPaおよび0.3とし、ガスケットのヤング率のみ70GPaとしている。接触面の摩擦係数の影響は、以下のように解析においてほとんど現れなかったので、全ての面においてμ=0.2一定と仮定している。境界条件としては、ガスケットとボルトの対称面の変位を長手方向に拘束し、ガスケット対称面については円周方向変位も拘束している。
4.2.4 ボルト軸力の与え方

各ボルトの軸力は、式 (4.3) における \(\delta_{ij} \) に不整量を与えることにより発生させる。ボルト \(j \) の軸力は、接触力を表す式 (4.3) の \(R_{ij} \) の面直角成分の総和により求められる。またボルト軸応力は、軸力をボルトの呼び径を直径とする円の面積で除した値である。図 4.2 は、本章で用いる締付け順序に対応したボルト番号を示している。

つぎに、ボルトに等しい軸応力を逐次与えていく場合、および最終的に均一なボルト軸応力を得ることを目的とした解析において、ボルト軸応力を発生するために必要となる初期不整量の算出方法について述べる。前者の場合、各ボルトに等しい軸応力を逐次与えていくが、その場合に与える不整量の大きさはボルトごとに異なった値となる。また後者の場合は、各ボルトに逐次同じ大きさの初期不整量を与えるが、この場合各ボルトに発生する初期軸応力は異なった値となる。以下にそれぞれの解析におけるボルト軸力の与え方を、図 4.3 と図 4.4 に示す 3 本のボルトで締結される管フランジ締結体を例に説明する。

各ボルトを等しい初期軸応力で締付ける場合（図 4.3）

bol 1 の締付け

最初に bol 1 を締付けるが、その場合接触面に与える不整量の値は、以下の手順により決定する。まず適当な大きさの不整量を与えて、その場合に得られる軸応力を求める。つぎに、不整量と得られる軸応力の大きさを変化し、不整量の値を修正する。この場合、もし軸応力が変化しても接触状態が変化しなければ、完全な線形関係が成立するので、不整量の修正は 1 回で終了する。その結果得られた不整量の大きさが、bol 1 の締付け時における \(d_1 \) である。この場合、bol 1 よりあとに締付けられるボルトの不整量はすべて零としている。
Initial State

Tighten bolt 1

Tighten bolt 2

Tighten bolt 3

图 4.3 各ボルトを等しい軸力で締付ける場合の解析手順
Preliminary Calculation

Tighten bolt 1

Tighten bolt 2

Tighten bolt 3

図 4.4 締結完了時に均一な軸力状態を達成するための初期締付け力を算出する解析手順
bolt 2 の締付け
つぎに 2 番目に締付ける bolt 2 に対しても同じ手順を繰り返す。ここで注意すべきことは，それ以前に締付けたボルトの不整量（この場合は bolt 1 の \(d_1 \)）は一定に保って解析を実施するという点である。

bolt 3 の締付け
bolt 3 に対しても同じ手順を繰り返す。

図 4.3 で示した例においては，最終的に得られる bolt 3 締付け時の不整量を，各ボルトに対して同時に与えると，締付け完了時に各ボルトに残留する軸応力が求められる。すなわち，実際の作業で問題となっているボルト軸応力のばらつきが評価できることになる。なお，以上の計算はプログラムの中ですべて自動で処理されるので，計算の途中に解析者による修正は不要となっている。

締結完了時のボルト軸応力を均一にする場合（図 4.4）

予備計算
式 (4.3) 中の \(\delta_{ij} \) に，すべて等しい大きさの不整量を代入してボルト軸応力を求める。この場合，対称性からすべてのボルトに等しい軸応力が発生する。前述の「ボルトを等しい初期軸応力で締付ける場合」と同様に，所定のボルト軸応力を与えるために必要な不整量 \(d \) の大きさを反復計算により決定する。

bolt 1 の締付け
予備計算で求めた不整量 \(d \) を，bolt 1 に与える。この場合，bolt 1 以外のボルトの不整量は零とおく。

bolt 2 の締付け
不整量 \(d \) を，bolt 1 と bolt 2 に与える。この時，bolt 3 の不整量は零としておく。

bolt 3 の締付け
不整量 \(d \) を，全てのボルトに同時に与える。bolt 3 の締付け力は所定の軸力と等しくなるので，最後に締付けを行うボルトの解析は行わなくてもよい。また，bolt 3 の締付け解析は，予備計算と全く同じとなる。

各ボルトに順次与えていく不整量の大きさはすべて同じ値である。すなわち，不整量 \(d \) を図 4.4 に示すように順次ボルトに与えていくと，締付け完了時に均一な軸応力を得るために各ボルトに与えるべき初期軸応力が，各段階で求められる。図 4.4 の場合，各ボルトの締付け力は \(F_{11}，F_{22}，F_{33} \) となる。
表4.1 各ボルトを等しい初期軸応力を締付ける場合の8本のボルトで締付けられる管フランジに対する不整量

<table>
<thead>
<tr>
<th>Bolt Number j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>d1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>d1</td>
<td>d5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>d1</td>
<td>d5</td>
<td>d3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>d1</td>
<td>d5</td>
<td>d3</td>
<td>d7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>d1</td>
<td>d5</td>
<td>d3</td>
<td>d7</td>
<td>d2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>d1</td>
<td>d5</td>
<td>d3</td>
<td>d7</td>
<td>d2</td>
<td>d6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>d1</td>
<td>d5</td>
<td>d3</td>
<td>d7</td>
<td>d2</td>
<td>d6</td>
<td>d4</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>d1</td>
<td>d5</td>
<td>d3</td>
<td>d7</td>
<td>d2</td>
<td>d6</td>
<td>d4</td>
</tr>
</tbody>
</table>

表4.2 締結完了時のボルト軸応力を均一にする場合の8本のボルトで締付けられる管フランジに対する不整量

<table>
<thead>
<tr>
<th>Bolt Number j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>d</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
</tbody>
</table>

以上示した計算手順から明らかのように，ボルトに等しい初期軸応力を与えた場合，締付け完了時に発生する軸応力のばらつきは，計算の最後の段階で一度に計算される．また一方，最終的な軸応力を一定にするために各ボルトに逐次与えるべき軸応力の大きさは，計算の過程で順次求められることになる．

以上の2つの場合に対して，式(4.3)中の初期不整量δijの大きさは，8本のボルトで締付ける場合（n = 8），それぞれ表4.1，4.2のようになる．
表4.3 ボルト締付け過程におけるボルト軸応力の変化

<table>
<thead>
<tr>
<th>Bolt Number j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000</td>
<td>0.042</td>
<td>0.052</td>
<td>0.052</td>
<td>0.000</td>
<td>0.042</td>
<td>0.049</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1.004</td>
<td>1.000</td>
<td>0.085</td>
<td>0.085</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>3</td>
<td>1.024</td>
<td>1.020</td>
<td>1.000</td>
<td>0.112</td>
<td>0.000</td>
<td>0.005</td>
<td>0.000</td>
<td>0.005</td>
</tr>
<tr>
<td>4</td>
<td>1.047</td>
<td>1.044</td>
<td>1.005</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>0.984</td>
<td>1.048</td>
<td>0.943</td>
<td>1.004</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>0.989</td>
<td>0.985</td>
<td>0.948</td>
<td>0.943</td>
<td>1.002</td>
<td>1.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>0.993</td>
<td>0.920</td>
<td>0.882</td>
<td>0.947</td>
<td>1.022</td>
<td>1.019</td>
<td>1.000</td>
<td>0.001</td>
</tr>
<tr>
<td>8</td>
<td>0.927</td>
<td>0.923</td>
<td>0.885</td>
<td>0.881</td>
<td>1.041</td>
<td>1.039</td>
<td>1.004</td>
<td>1.000</td>
</tr>
</tbody>
</table>

4.3 実験方法

本研究で提案する数値解析の妥当性を確認するために、管フランジを個別ボルトで
1本ずつ締付けた場合の実験を行う。実験ではJIS B 2238 呼び圧力 40K、呼び径 50 のハ
ブ付き一体形大平面座フランジを対象とし、メートル並目ねじ M16 を有する 8 本のボ
ルトで締付ける。ガスケットとしては、厚さ 3mm の純アルミ（A1050）材のものを対
象としている。締付け順序は図4.2に示した通りである。締付けには、ナットにトル
クを与えるためとボルトの回転を押さえるために 2 本のスパナを用いる。また、1本
目のボルトを締付ける際に大きな口開き変形が発生することを避けるために、全ての
ボルトをあらかじめ 5MPa 程度の軸応力で軽く締付けておく。この状態を初期状態と
し、この値からの増加量をボルト軸応力としている。各ボルトの円筒部には、軸応力
を測定するために 2 枚のひずみゲージを 180 度離して張付けている。

4.4 ボルトを等しい初期軸応力で締付ける場合

4.4.1 フランジ座面形状の影響と解析手法の妥当性

表4.3は、表4.1に対応する解析結果として、締付け過程の進行に伴うボルト軸応力
変化を示している。座面形状は大平面座であり、表中の値は締付け過程におけるボル
図 4.5 締付け完了時のボルト軸応力のばらつき

図 4.6 締付け過程におけるbolt 1の軸応力変化

ボルト軸応力σ_fと所定の初期軸応力σ_iの比を示している。ここで、σ_iは50MPa（ボルト軸力：10.1kN）一定としている。すなわち、8行目の値が締付け完了時に各ボルトに残留している軸応力を示している。表4.1において不整量が零となっている右上三角の部分でも、表4.3ではわずかに軸応力が生じている。このことは、ボルトに軸力を逐次与えていく過程において、多くのボルトの頭部およびナット座面で接触と離隔状態が混在していることを示している。
図4.5は締結完了時のボルト軸応力のばらつきに対する座面形状の影響を示しており、大平面座においては実験値も示している。縦軸は締結完了時のボルト軸応力σ_{1}を所定の初期軸応力σ_{0}除して無次元化しており、横軸は図4.2で規定したボルト番号を示している。大平面座における実験結果と解析結果は比較的よく一致しており、今回提案した解析手法は妥当であるといえる。各座面形状を比較してみると、平面座では締結完了時のボルト軸応力のばらつきはほとんど見受けられない。しかしながら、平面座においては締結完了時のボルト軸応力のばらつきが大きくなっており、その影響は大平面座よりもいわゆるフランジローテーションが大きい小平面座において顕著である。平面座フランジの場合、はじめに締付けられるbolt1からbolt4の4本のボルトの軸応力が弹性相互作用の影響により低下していることがわかる。また、bolt5とbolt6の軸応力は、管フランジの口開き変形のため増加していることが分かる。

図4.6は一番最初に締付けられるbolt1の軸応力の変化を示したものであり、大平面座の解析結果については表4.3の第1列に対応している。ここで横軸は、締付け順序を示している。平面座フランジの場合、bolt1の隣に位置するbolt5とbolt8を締付けると、bolt1の軸力は弾性相互作用の影響により低下していることがわかる。一方、それ以外のボルトを締付けるとbolt1の軸力は若干増加しており、管フランジの口開き変形が生じていることがわかる。また、小平面座の方が大平面座に比較して、両隣のボルトを締付けた場合の軸応力低下率、およびそれ以外のボルトを締付けた場合については軸応力の増加率が大きくなっている。すなわち、大きなフランジローテーションを生ずるフランジ座面形状ほど、各ボルトによる弾性相互作用が大きいことを示している。全面座では締付け作業が進行してもボルト軸応力はほとんど変化していない。

4.4.2 管フランジの呼び径の影響

管フランジの呼び径がボルトの締付け特性に与える影響を考察する。対象とするのは、JIS B 2238呼び圧力40Kの大平面座フランジで、呼び径は15, 50, 150, 300mmのものである。それぞれ4, 8, 12, 16本のボルトで締付けが行われる。各管フランジのボルト締付け順序を図4.7に示している。いずれも90度離れて位置する4本のボルトを1組とした、対角状の締付け順序としている。また、初期締付け力はボルト軸応力σ_{1}が50MPaとなるように設定している。

図4.8は上記手順によりボルト締付け解析を行った際、締付け完了時のボルト軸応力
図 4.7 ボルトの締付け順序に対応したボルト番号

図 4.8 締付け完了時のボルト軸応力のばらつきに対する管フランジの呼び径の影響

のばらつきを示している。フランジの呼び径が大きくなるほどボルト軸応力のばらつきは大きくなっており、最大 30%程度の軸力の低下が確認される。呼び径 15 以外の管フランジに関しては、90 度離れて位置する 4 本のボルトの軸応力がほぼ同じ値になっていることが分かる。また、呼び径 150 の場合のみボルト軸応力が 3 段階に変化していることがわかる。
表 4.4 均一なボルト軸応力を目的とするボルト締付け解析過程におけるボルト軸応力の変化

<table>
<thead>
<tr>
<th>Bolt Number j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.064</td>
<td>0.045</td>
<td>0.055</td>
<td>0.055</td>
<td>0.000</td>
<td>0.052</td>
<td>0.052</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>1.068</td>
<td>1.068</td>
<td>0.091</td>
<td>0.091</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>3</td>
<td>1.090</td>
<td>1.091</td>
<td>1.109</td>
<td>0.120</td>
<td>0.000</td>
<td>0.006</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>4</td>
<td>1.116</td>
<td>1.116</td>
<td>1.115</td>
<td>1.115</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>1.057</td>
<td>1.121</td>
<td>1.057</td>
<td>1.119</td>
<td>0.960</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>1.061</td>
<td>1.061</td>
<td>1.061</td>
<td>1.062</td>
<td>0.962</td>
<td>0.962</td>
<td>0.962</td>
<td>0.962</td>
</tr>
<tr>
<td>7</td>
<td>1.065</td>
<td>0.997</td>
<td>0.996</td>
<td>1.065</td>
<td>0.981</td>
<td>0.981</td>
<td>0.995</td>
<td>0.001</td>
</tr>
<tr>
<td>8</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
</tbody>
</table>

表 4.5 有限要素解析より算出されたボルト締付け軸応力

<table>
<thead>
<tr>
<th>σ_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>53.2</td>
<td>53.4</td>
<td>55.4</td>
<td>55.8</td>
<td>48.0</td>
<td>48.1</td>
<td>49.8</td>
<td>50.0</td>
</tr>
<tr>
<td>100</td>
<td>104.9</td>
<td>105.0</td>
<td>107.1</td>
<td>107.2</td>
<td>97.7</td>
<td>97.9</td>
<td>99.7</td>
<td>100.0</td>
</tr>
<tr>
<td>150</td>
<td>155.3</td>
<td>155.3</td>
<td>157.5</td>
<td>157.5</td>
<td>147.8</td>
<td>147.9</td>
<td>149.6</td>
<td>150.0</td>
</tr>
</tbody>
</table>

[MPa]

4.5 締結完了時の均一なボルト軸応力を目的とする場合

本節では，締付け作業を終了した時点で全てのボルト軸応力を均一にすることを目的として，そのために必要な初期軸応力の大きさを有限要素法により算出する．また，実験を行うことにより，今回提案した解析の実用性を検討する．前節までは，各ボルトに1回だけトルクを与える，すなわち1ステップで締付けを完了させた場合について検討してきた．しかしながら，実際のボルト締付け作業では，一般的に片締め等を防ぐ理由で各ボルトを数回ずつ締付けることにより作業を完了する．ここでは，3ステップで締結完了時に150MPaの軸応力を与える場合を扱う．締付けを開始する時点の各ボルトの軸応力を零とし，各ステップにおいて50MPaずつ軸応力を増加させると
図4.9 有限要素解析より算出された初期ボルト軸力をもとにして、管フランジの締付け実験を行った際の各ステップにおけるボルト軸応力のばらつき

する。表4.4は、表4.2の各不整量に対応して求められた1回目のステップ（50MPa）における軸応力の解析結果を示している。値の表示方法は表4.3と同じである。8行目が締付け完了時を表しており、すべてのボルトの軸応力が等しくなっている。また表4.5は、各ステップの最初にそれぞれのボルトに与えた軸応力の大きさを示しており、1行目の第1ステップの軸応力については、当然のことながら表4.4の対角成分に50MPaを乗じた値と等しくになっている。

この表から、例えば、bolt 1とbolt 2など180度離れた位置にあるボルトについては、各ステップにおける軸応力の値はほとんど同じであることがわかる。また、両隣の2本のボルトがそのボルトより後で締付けられるbolt 1, bolt 2, bolt 3, bolt 4については、比較的な初期軸応力を与えなければならないことがわかる。

図4.9は、表4.5の値に従って締付け実験を行った場合の結果を示したものである。この場合、解析結果は全て1となるので、実験結果が1に近いほど本解析手法が実用的であるといえる。この図より、締付け作業のステップ数が多くなるほどばらつきが小さくなっていることがわかる。その原因としては、締付けのステップ数が増加すると、各ステップの締付けを開始時のボルト軸応力が高くなるので、管フランジ締結体が変形しにくくなっていることが考えられる。図4.5に示したように、各ボルトを逐次一定の初期軸応力で締付けた場合のばらつきは約15%であり、ここで示した結果では約3%のばらつきにとどまっている。したがって、今回提案した解析手法の妥当性が
確認されたといえる。

4.6 結言

金属平形ガスケットを用いた管フランジ締結体のボルト締付け特性を、数値解析と実験により検討した結果、以下に示す結論を得た。

1. 各ボルトを等しい軸応力で逐次締付けた場合に発生する軸応力のばらつき、および締結完了時に均一なボルト軸応力を得るために必要な初期ボルト軸応力の大きさを、三次元弾性接触問題として有限要素法により効率的に評価できる手法を提案した。

2. 小平面座のような曲げ剛性の低い管フランジほど、締付け完了時のボルト軸応力のばらつきが大きくなることを示した。

3. 管フランジの呼び径が大きくなるほど、締付け完了時のボルト軸応力のばらつきが大きくなることを示した。

4. 今回提案した解析手法は、一般に用いられている各ボルトを数回ずつ締付ける場合にも対応でき、締付けのステップ数が増すほど、ボルト軸力のばらつきが小さくなることを示した。
第5章

管フランジ締結体の内圧負荷特性におよぼすフランジ形状の影響

5.1 緒言

現在広く使用されている管フランジの形状寸法は、JIS、ANSI/ASME、DIN などの規格によって定められている。しかしながら、締付けボルトの本数や各部の詳細な寸法については、必ずしも力学的な観点から十分な検討を加えた結果決定されたものとはいええない。このことは、各規格の寸法系列が異なることからも明らかである。したがって、現行の管フランジ規格を力学的見地から体系的に検討し、合理的な規格を定めるための基礎データを蓄積することは極めて重要であると考えられる。その場合、規格の多様性を考慮すると、実験的手法よりも数値解析による評価が有力であると考えられる。また、締付けボルトの影響を含めて解析する場合、管フランジ継手は三次元モデルとなる。

そこで本章では、管フランジ締結体の力学的特性を体系的に解明する第一段階として、三次元弾性接触問題を扱える有限要素法を用いて、複雑な形状を有する管フランジ締結体のモデリングを工夫することによって解析の効率化をはかり、フランジ座面形状、締付けボルトの本数と呼び径、フランジの厚さ等が、管フランジ締結体の種々の力学的特性に及ぼす影響を検討する。解析の対象は、JIS B 2238 呼び圧力 40K、呼び径 50 のハブ付き一体形フランジで、ガスケットを使用しない場合（63, 64, 65）を扱う。この規格において全面座は規定されていないが、比較のために大平面座（large raised face）、小平面座（small raised face）、全面座（flat face）を解析の対象とする。なお，
図5.1 はめ合いねじ部等価高さを算出するための軸対称モデル

解析手法の妥当性については、管フランジ継手が長手方向に引張り荷重を受ける場合、および内圧を受ける場合について、締付けボルトの軸応力変化をひずみゲージで測定することによって検証する。

5.2 解析方法

5.2.1 はめ合いねじ部等価高さ

ボルトのはめあいねじ部は幾何学的に非常に複雑な形状をしており、そのことがねじ部の応力解析を困難にしている主要な原因となっている。しかしながら、本章における主要な解析項目は締付けボルトのねじ部の応力解析ではなく、接触面の面圧分布とボルト軸応力の変化であるので、以下の手法により解析の効率化を図る。基本的には図5.1(a)に示すようなはめあいねじ部を、図5.1(b)のような等価な軸方向剛性を持つボルト頭部と類似の形状を有するモデルに置き換える。その結果、ボルトとナットが接触面を持たない単一の弾性体として扱うことが可能となる。図5.1(b)に示した等価モデルにおいて頭部高さ \(H \) を種々変化させ、はめあいねじ部の剛性と等しくなる等価高さ \(H_{th} \) を求める。なお、解析は図5.1(b)に示したモデルにより、軸対称弾性問題として有限要素法により実施する。外力はモデル化したボルト円筒部下端に軸方向一様変位として与える。なお等価モデルの頭部形状は、六角ボルトの頭部の二面幅に対
5.2.2 解析モデル

解析に用いた有限要素モデルの一例（大面面座）を図5.3に示す。要素には8節点アイソパラメトリック要素を使用している。管フランジの円周方向の対称性を考慮し、モデルの中心角 θ_c は $\{360^\circ / (2 \times ポルトの本数)\}$ とし、対称面の円周方向変位を拘束している。ボルト・ナットは、前節で得られた結果に従って一体としてモデル化している。したがって、解析モデルは上下フランジおよびボルト・ナットの等価モデルの3物体と、フランジ座面、ナット座面およびボルト頭部座面の3接触面から構成される3体 3接触面問題となる。また、各物体のヤング率とポアソン比はそれぞれ200GPaおよび0.3としている。接触問題の解析方法としては、前章と同じ手法を採用している。接触面の摩擦係数 μ の影響は、以下の解析においてはほとんど現れなかったので、すべての面において $\mu = 0.2$ と仮定している。
5.2.3 境界条件

図 5.4 は、接触面の位置と境界条件を示している。初期締付け時ににおけるボルト軸力は、ナット座面の初期不整量により発生させる。内圧は、管フランジ内表面に半径方向の分布荷重として与える。その際管フランジに生ずる引張り荷重は、一方の管フランジの端部に軸方向の分布荷重として与え、もう一方の管フランジは下端の軸方向変位を拘束する。また、内圧の増加に伴いフランジ座面が離隔していくが、離隔した面には順次内圧を面に垂直な分布荷重として与え、離隔節点が発生しなくなるまでこれを繰返す。以上の計算過程において、フランジ座面の一番外側の接触面節点が離隔した場合、また全面座の場合はフランジ座面のボルト穴を形成する接触面節点が離隔した場合に漏れが生じたとして計算を終了する。
5.3 実験方法

本研究で用いる数値解析法の妥当性を確認するために、内圧が作用する場合と管フランジが長手方向に引張りを受ける場合の2通りについて実験を行い、ボルト軸応力とボルトに生じる最大曲げ応力を測定し、解析結果と比較する。まず、内圧の実験は、図5.5に示した装置により実施する。使用する管フランジは図5.6に示した寸法の大平面座のフランジであり、各部の寸法は、JIS B 2238呼び圧力40K呼び径50の基準寸法に準拠して作成しており、材質はSS400である。図中tはフランジ厚さを示しており、特に断らない限り規定値のt=24mmを用いる。上下フランジの端部にはねじ穴が設けられており、それぞれ圧力変換器および油圧ポンプからのホースを接続するためのものである。締付けには、メートル並目ねじM16を有する8本のボルトを使用し、初期締付け時の軸応力はそれぞれ100MPaとする。内圧は油
圧ポンプにより作用させ、この内圧の大きさは上側の管フランジにとりつけた圧力変換器により測定する。内圧を増加させていき、測定圧力の上昇が止まりその値が変化しなくなった点を漏洩が開始した点として実験を終了する。各ボルトには、フランジ軸中心側とそれから180°離してひずみゲージが貼り付けられており、この2枚のゲージから得られる測定値を用いて、ボルト軸応力と最大曲げ応力を算出する。

管フランジの長手方向に引張り荷重を作用させる実験においては、JIS B 2238 呼び圧力40K 呼び径15 の大平面座と全面座の管フランジを用いる。そこで、管フランジには最大80kN までの引張り荷重を作用させる。この場合も管フランジの材質はSS400であり、メートル並目ねじM16 を有する4本のボルトで締付ける。なお、各ボルトの初期締付け軸応力は100MPaである。
5.4 解析結果と考察

5.4.1 ボルト軸応力と解析手法の妥当性

本節では，解析結果と実験結果を比較することにより，解析手法の妥当性を検討するとともに，管フランジが軸方向引張り荷重，あるいは内圧を受けた場合の力学的挙動について検討する．なお，呼び径15の管フランジは本節でのみ扱う．

まず管フランジが長手方向に引張り荷重を受けた場合について，ボルト軸応力\(\sigma_b\)の解析値と実験値を図5.7に示している．図中\(\sigma_i\)は，初期締付け時のボルト軸応力（=100MPa）である．大平面座，全面座とも，フランジ座面で接触が保たれている範囲ではボルト軸応力の増加率は小さいが，引張り荷重が増加して完全に離隔した後はボルト軸応力が直線的に変化し，増加率も大きくなっている．図5.8は，この場合のボルトの最大曲げ応力\(\sigma_{bm}\)の変化を示している．フランジ部の変形による曲げモーメントの作用により，大平面座では全面座に比較してボルト初期締付け時の\(\sigma_{bm}\)が高い．し
図5.7 管フランジ引張り荷重の増加にともなうボルト軸応力の変化（管フランジ呼び径15mm）

図5.8 管フランジ引張り荷重の増加にともなうボルト曲げ応力の変化（管フランジ呼び径15mm）

かしながら、引張り荷重が小さい範囲では、σ_{bm} の増加率は全面座の方が高くなってい
る。

図5.9 は、内圧の増加に伴うボルト軸応力 σ_b の変化を示している。ここで、各座面形状に対する結果の右端が、漏れが始まると考えられる点である。大平面座の場合、定
図 5.9 内圧の増加にともなうボルト軸応力の変化

図 5.10 内圧の増加にともなうボルト曲げ応力の変化

性的変化は比較的良く一致している。しかしながら、漏れの始まる内圧の大きさはやや異なっている。この一つの原因として、本解析では内部流体の粘性等を考慮していないことが考えられる。2種類の平面座において、σ_b は一旦低下してから増加に転じているが、全面座の場合は内圧の増加に伴って単純に増加している。また、漏れが生ずると考えられる内圧の値は、平面座に比べて全面座でかなり低くなっている。この場合のボルトの最大曲げ応力 σ_{bm} の変化を図 5.10 に示している。全面座では、σ_{bm} は
図5.11 初期ボルト締付け時におけるフランジ座面の半径方向の面圧分布

ほとんどのボルト軸応力と同じであり、ボルトに曲げがほとんど作用していない。平面座の場合、初期締付け時の値は、平面上座の方が高くなっているが、内圧の増加によるσ_{bm} の増加率は、平面上座の方がやや大きくなっている。

以上の結果、解析結果と実験結果は、全体的にはかなりよく一致しており、本研究における解析手法は妥当であると考えられる。

5.4.2 フランジ座面圧力

図5.11は、初期締付け時におけるフランジ座面の半径方向の接触面圧を示している。θ = 0.0° はボルト穴の部分、θ = 22.5° は隣接するボルト穴との対称部分である。2種類の平面座では、初期締付け時からフランジの中心側が離隔しており、非常に特徴的な分布を示すが、平面座は全体的に面圧が低く、ボルトに近い部分でわずかに高くなっている。平面座において、フランジ座面の一軸外側の面圧がわずかに低下しているが、これはフランジ座面の外縁部分の剛性が低いことに起因していると考えられる。

初期締付け時のフランジ座面の円周方向の接触面圧を図5.12に示す。2つの平面座においては座面の外周に沿った値であり、平面座は大平面座と同じ半径の円に沿った値である。この図から、大平面座においてはボルトに近い部分（θ = 0.0°）で接触面圧が低くなっており、わずかに条件は異なるが、ボルト穴を省略して有限要素解析を行った従来の研究（61）とは違った傾向を示している。その理由としては、本研究で
図5.12 初期ボルト締付け時におけるフランジ座面外縁部の面圧分布

図5.13 内圧の増加にともなうフランジ座面外縁部の面圧分布変化

内圧の増加にともなうフランジ座面外縁部の面圧分布変化はボルト穴を含めて管フランジ締結体をモデル化したことが考えられる。しかしながら小平面座では、円周方向に対して面圧がほぼ一定になっている。すなわち、フランジ座面がある程度ボルト穴から離れると、ボルト穴の影響がほとんど現れなくなると推察される。全面座については、ボルトに近い部分でわずかに面圧が高くなっている。

図5.13は、大平面座において、内圧が増加した場合の座面の外周に沿った接触面圧の変化を示している。内圧が増加していくと、面圧の低下率が大きくなり、その傾向
はボルトに近い部分で特に顕著である．すなわち，最終的にボルトに一番近い部分から漏れが生ずる可能性が高いことを示唆している．

5.4.3 ボルト本数の影響

ボルト初期締付け軸力の合計を 8 本締めの場合の値に固定して，ボルト本数を 4 本から 12 本まで 2 本ずつ増加させることにより，締付けボルトの本数の影響を考察する．
図5.15 内圧の増加にともなうボルト軸応力の変化におけるボルト本数の影響

図5.14の(a), (b)は、それぞれ大平面座と全面座の初期締付け時の接触面圧分布を図5.13と同じ表示方法で示している。大平面座においては、4本の場合を除いてほぼ同様な分布パターンとなっている。全面座においては、ボルト本数が少なくなっても、ボルトに近い部分の面圧が高くなり、対角に遠い部分の面圧が低くなる傾向が見受けられる。図5.15は、大平面座において、内圧が増加した場合のボルト軸応力σbの変化を示している。ボルト数が4本の場合を除いて、ほぼ同様な変化を示しており、漏れが生ずると考えられる内圧も4本の場合を除いてほぼ一定である。ボルトの最大曲げ応力σbmについては、ボルト本数が増加するにしたがって初期締付け時のボルト軸応力σiに対する値σbm/σiが高くなるという結果が得られた。

5.4.4 フランジ厚さの影響

フランジ厚さ（図5.6中t）を、規格値に対して−4mmから+4mmまで2mmずつ変化させた場合の影響を考察する。図5.16は、初期締付け時における大平面座のボルトに一番近い部分（θ=0.0°）の半径方向の面圧分布を示している。図から、フランジ厚さが厚いほど座面の外周における面圧が小さくなり、全体的にだらかな分布になる傾向にあることがわかる。図5.17は、内圧の増加に伴うボルト軸応力σbの変化を示している。フランジ厚さが厚くなると、漏れが発生すると考えられる内圧の大きさはわずかに増加にとどまっているが、内圧の増加によるσbの変化に対する影響は比較
図5.16 初期締付け時のガスケット座面の半径方向の面圧分布に対するフランジ厚さの影響

図5.17 内圧の増加にともなうボルト軸応力の変化に対するフランジ厚さの影響

的顕著である。また図には示していないが、ボルトに生じる最大曲げ応力 \(\sigma_{bm} \) も小さくなる。
5.5 結言

管管フランジ締結体の力学的特性を，三次元弾性接触問題として体系的に解析することを目的とし，数値解析と実験により検討した結果，以下に示す結論を得た．

1. はめあいねじ部をボルト頭部と同様な形状に置き換えることにより，複雑な形状を有する管フランジ締結体の力学的特性を，三次元弾性接触問題として有限要素法により効率的に解析できることを示した．また，その解法の妥当性については，管フランジ締結体が内圧を受けた場合と長手方向に引張りを受けた場合の実験と比較することにより確認した．

2. 管フランジ締結体に内圧が負荷された場合，全面座フランジは平面座に比べて接触面圧が全体に極端に低く，このため漏れが生ずると考えられる内圧が小さいと推察される．

3. ボルト穴を考慮した三次元解析を実施した結果，円周方向のフランジ座面圧分布は，必ずしもボルトに近いところが高いとは限らないことを示した．

4. 締付けボルトの本数がある程度以上になると，面圧分布および内部流体の漏れが生ずると考えられる内圧の大きさはほとんど変化しなくなる．

5. 大平面座フランジの場合，フランジ厚さを厚くすると，フランジ座面の面圧分布がなんだらかになり，ボルトに生じる曲げ応力が小さくなる．
第6章

金属平形ガスケット付き管フランジ
締結体の荷重負荷特性の評価

6.1 緒言

管フランジ締結体からの内部流体の漏洩問題にもっとも影響を及ぼすのは，使用時のガスケット座面の面圧分布および離隔を含めた接触面積の大きさであると考えられるが，これらの量を実験により測定することは非常に困難であり，従来の研究においてはほとんど行われていないようである（104, 105）．また，実際の管フランジ締結体ではボルトが離散的に配置されているにもかかわらず，解析においては軸対称モデルやボルト穴のない三次元モデルなど，かなり簡略化されたモデリングが行われている．

そこで本章では，管フランジ締結体の力学的特性をより精度良く評価することを目的とし，三次元弾性接触問題として有限要素法を用いることにより，荷重の増加にともなうボルト軸力とガスケット座面圧分布および接触面積の変化を考察する．前章では，ガスケットを省略したモデルにより管フランジ締結体の基礎的な力学的特性を評価した．ここでは，金属平形ガスケットを用いた場合について，その材質と厚さの違いによる影響を検討する．対象とする管フランジは，前章同様 JIS B 2238 呼び圧力 40K，呼び径 50 のハブ付き一体形フランジであり，ガスケット座面形状として大平面座を有している．荷重としては，内部流体により内圧が作用する場合に加え，配管系の自重や地震による荷重に対応して曲げモーメントの影響（68）も考察する．また，内圧と曲げモーメントが作用する場合の実験を行い，ボルト軸力の変化を測定することにより，解析の妥当性を検討する．
図 6.1 有限要素モデル

6.2 解析方法

6.2.1 解析モデル

解析に用いた有限要素モデルを図 6.1 に示す．(a) は荷重として内圧のみが作用する場合に対するモデルであり、管フランジの円周方向の周期性を考慮し、モデルの中心角 θ_c を $360^\circ/(2 \times ボルトの本数}$ としている．(b) は荷重として曲げモーメントと内圧が同時に作用する場合のモデルであり、モデルの中心角は 180 度としている．いずれのモデルにおいても長手方向の対称性を考慮し、ガスケットの中心から半分のみをモデル化している．また、ボルトとナットは一体と仮定している．このため、解析モデルはフランジ、ガスケットおよび一体と仮定したボルトとナットの 3 体、およびボルト頭部座面とガスケット座面の 2 接触面から構成される 3 物体２接触問題となる．材料定数としては、ボルトとフランジのヤング率を 200GPa 一定とし、ガスケットのヤング率は軟鋼 (SS400) と純アルミ (A1050) を想定し、それぞれ 200GPa, 70GPa とし、ポアソン比は 0.3 一定としている．接触面の摩擦係数 μ は、全ての接
触面において \(\mu = 0.2 \) 一定と仮定している。

6.2.2 境界条件

ボルト軸力は、ボルト頭部座面の初期不整量により発生させ、初期軸応力を 100MPa としている。内圧は、フランジ内表面および隣接しているガスケット座面に面直角方向の分布荷重として与える。また、内圧により生じるフランジの引張り荷重は、フランジの端部に軸方向の分布荷重として与える。曲げモーメントは、図 6.1(b) に示すように、4 点曲げ試験と同様な方法により作用させている。また、ガスケットとボルトの対称面は長手方向の変位を拘束している。

6.2.3 解析の進め方

管フランジを用いた配管系においては、自重や各配管要素の固定方法等に起因して使用前からフランジ部に曲げモーメントが作用している場合がある。その様な状態で運転に入ると、管フランジは曲げモーメントが負荷された状態で内圧が変化するという条件下で使用されることになる。また、仮に曲げが作用しないように配管が設置できても、地震等により曲げモーメントが生じることが考えられる。この場合、内圧が付加された状態で曲げモーメントが変化することになる。以上のような状況を考慮するために、本解析では以下の 3 つの荷重作用状態を扱う。

(1) 内圧のみ
(2) 内圧一定で曲げモーメント増加
(3) 曲げモーメント一定で内圧増加

例として、上記の (2) の場合の解析の進め方を図 6.2 に示す。この場合、解析は (A) 初期締付け時 (B) 内圧作用時 (C) 曲げ作用時の 3 つの段階に分けることができる。

まず (A) の初期締付け時においては、所定のボルト軸力が得られるボルト頭部座面の初期不整量の大きさを決定する。

つぎに (B) の内圧が作用する場合、収束計算により各節点の接触状態を決定する。このときに、ガスケット座面に新しい隣隔節点を生じた場合、その面に内圧に対応して新たに分布荷重を付加し、再び接触状態を決定するための収束計算を行う。この操作を繰り返し、新しい隣隔節点が無くなった時点を内圧作用状態とする。

86
最後に、(C) の曲げモーメント作用時については、荷重の増加にともなう接触面積の増減に対応して内圧を付加する面積を変化させ、曲げモーメントの各増分過程に対して接触状態を求める。なお、曲げモーメントの増分量は $\Delta M = 0.5\text{kN} \cdot \text{m}$ とした。

前述 (1), (3) の荷重作用状態についても同様の手順で解析を進め、いずれの場合もガスケット座面外縁の接触節点が離隔した時点で漏れが発生したと判定する。
6.3 実験方法

本研究で用いる数値解析法の妥当性を確認するために，前章において示した 3 種類の荷重作用状態に対応する実験を行う．そして，荷重に対するボルト軸応力の変化を測定し，解析結果と比較する．

使用した管フランジの詳細な寸法は前章と同じである．使用する金属平形ガスケットは，内・外径がそれぞれ 50，105mm，厚さは 3mm と 6mm の 2 種類，材質は軟鋼 (SS400) と純アルミ (A1050) としている．締付けには，メートル並目ねじ M16 を有する 8 本のボルトを使用し，初期締付け時の軸応力はそれぞれ 100MPa とする．各ボルトの円錐部には，180° 離して 2 枚のひずみゲージが貼り付けられており，これらのひずみゲージから得られる測定値を用いてボルト軸応力を算出する．

図 6.3 に，荷重として内圧と曲げモーメントを同時に作用させる場合の実験装置を示す．内圧は油圧ポンプにより作用させ，この内圧の値は圧力変換器により測定する．また，曲げモーメントを作用させるための荷重 F は，油圧シリンダにより作用させ，
この値は油圧シリンダの下に取り付けたロードセルにより測定する。いずれの実験においても、漏洩が目視で確認された時点で測定を終了する。

6.4 内圧のみが作用する場合

6.4.1 ボルト軸応力の変化

図6.4にガスケット厚さ\(t_g = 6\text{mm}\)の場合について、内圧の増加にともなうボルト軸応力\(\sigma_b\)の変化を示している。ボルト軸応力\(\sigma_b\)は初期軸応力\(\sigma_i\)で除して無次元化しており、各データの右端は漏れが生じると考えられる点である。実験値と解析値を比較すると、漏れが生じると考えられる内圧の大きさに多少違いがみられるものの、ボルト軸応力変化の傾向は比較的よく一致している。また、内圧が作用し始めると、いずれのボルトの軸応力も低下し始めている。つまり、ボルト軸力の増減分と外力の比である内力係数が負の値になる。これは、内圧の作用により平面座特有のフランジローテーションがより大きくなることによるものと考えられる。ガスケットの材料の影響については、ヤング率が大きなSS400の方が内圧の増加に対するボルト軸応力の変化量が大きくなっている。ガスケット厚さについては、厚さの減少にともなってボルト軸応力の変化量が大きくなるという結果が得られた。また、図6.4中にガスケットを用いない場合の解析結果も示している。以上の結果、ガスケットの剛性が高いほどボル
図6.5 初期ボルト締付け時におけるフランジ面面の半径方向の面圧分布 \((t_g=6\text{mm})\)

トルネルの応力の変化が大きい、つまり対称係数は負荷に大きくなるといえる。これは、ガスケットの剛性が高くなるほどガスケット面面の違い面積が大きい、また、ガスケット座面反力の作用点が、よりガスケット外側面に近づく、内圧の作用にともないフランジ面圧がより大きくなることに起因している。

6.4.2 初期締付け時のガスケット座面圧分布

ボルト初期締付け時におけるガスケット座面圧分布の解析結果を図6.5に示す。解析モデルとして図6.1(a)を用いているため、ここではボルトの中心を通る \(\theta = 0.0^\circ\)，および接続するボルトとの対称部分である \(\theta = 22.5^\circ\) における半径方向の面圧分布を示している。ガスケット厚さとしては \(t_g = 6\text{mm}\) のものを用いており、ガスケットの材質の違いによる影響を示している。いずれの場合も初期締付け時からかなりの部分が離間していることがわかる。これは、ガスケット座面形状が平面であるために生じるフランジ面圧の影響であると考えられる。また、ガスケットのヤング率が小さいほど接触面積は大きくなっており、そのためガスケット座面外側面における面圧が低下している。ガスケットを用いない場合の接触面積は、ガスケットを用いた場合と比べて小さくなっており、座面外側面において非常に大きな面圧が発生している。ガスケット有効幅はJIS B 2205に基づくと9.3mmであり、ガスケット材料、厚さに よらず一定であるとされている。本解析による値は、ガスケット厚さが6mmの場合、

90
図6.6 内圧の増加にともなうガスケット座面の面压分布変化（$E_g=200\text{GPa}, t_g=3\text{mm}$）

ガスケット未使用、ガスケット材料A1050およびSS400においてそれぞれ、6.5、12.8、10.2mmとしており、規格値とかなり異なることが確認できる。また、$\theta=0.0^\circ$と22.5°の部分を比較すると、ボルト穴から遠い$\theta=22.5^\circ$の部分の方が面圧が高くなっている。この原因として、ボルト穴の存在によるフランジ部の剛性の変化が考えられる。ガスケット厚さについては、厚さの増加にともなって面圧分布が一様に近づく傾向となった。

6.4.3 ガスケット座面圧分布変化

図6.6に内圧の増加にともなう、ガスケット座面圧分布および接触面積の変化を示している。図中に示した数字は内圧の大きさである。ガスケットはヤング率が$E_g=200\text{GPa}$、厚さが$t_g=3\text{mm}$のものを対象としている。図中、白色で示している部分は接触しておらず、初期締付け時からかなりの部分が離隔していることがわかる。また、内圧の増加にともない接触面積が減少している。離隔部分の広がりはほぼ同心円状であるが、いずれの内圧においてもボルト穴の存在する$\theta=0.0^\circ$の部分の面圧が同一半径上でもっとも低くなっており、最終的に図に示した接触面の右下端部の接触面節点が離隔し、その部分から漏れが生じるという結果となった。

図6.6のガスケット座面外縁部における円周方向の面圧分布を示したのが図6.7である。面圧の低下率は内圧の増加とともに大きくなっており、最終的に$\theta=0.0^\circ$のボルト穴のすぐ内側の界面から漏れが生じ始めることがわかる。この現象はガスケット材
図 6.7 内圧の増加にともなうガスケット座面外縁部の円周方向の面圧分布変化 \((E_g=200 \text{GPa}, t_g=3 \text{mm})\)

料、厚さの組み合わせにかかわらず見受けられた。

6.5 内圧と曲げが同時に作用する場合

6.5.1 ボルト軸応力の変化

本節においてガスケットはとくにことわらない限り、厚さが3mmでヤング率が200GPaのものを対象としている。

図 6.8(a)は内圧を8MPa一定とし曲げモーメントを増加させた場合、(b)は曲げモーメントを1kN·m一定とし内圧を増加させた場合の、各荷重の増加にともなうボルト軸応力の変化を示している。解析結果については、曲げモーメントによる対称性を考慮して図中に示した5本のボルトのデータを示し、実験結果については曲げモーメントによる引張り側のbolt 1と圧縮側のbolt 5の値を示している。各データの右端が内部流体の漏れが始まると考えられる点である。実験値と解析値を比較すると、図 6.8(b)のbolt 5の結果が多少異なるが、全体的には比較的よく一致しており、本解析の妥当性が確認される。

図 6.9は荷重の値が変化した場合の、bolt 1とbolt 5の軸応力変化の解析結果を示している。図 6.9(a)は内圧を一定として曲げモーメントを増加させた場合であり、内
圧を0, 4, 8MPaと変化させている。圧縮側に配置されたbolt 5の場合、内圧の大きさにかかわらず曲げモーメントの増加に対して、ボルト軸応力は同様な減少傾向を示している。これに対して、引張り側のbolt 1は内圧が高いほど曲げの増加によるボルト軸応力の増加率が高くなっている。また、内圧が大きいほど裂れが生じ始めると考えられる曲げモーメントは小さくなっている。図6.9(b)は曲げモーメントを一定として内圧を増加させた場合であり、曲げモーメントを0, 1, 2, 3kN•mと変化させている。bolt 1, bolt 5のいずれのボルトも曲げモーメントが大きくなっても、内圧の増加
に対する軸応力の变化傾向はあまり変わらないが、溶れが生じると考えられる内圧の大きさは、曲げモーメントの増加にともなってかなり小さくなるといえる。

6.5.2 ガスケット座面圧分布変化

図 6.10 は曲げモーメントと内圧の増加にともなうガスケット座面圧分布と接触面積の変化を示している。グレースケールのレベルは図 6.6 と同じであるのでここでは省略している。図 6.10(a) は内圧を 8 MPa 一定とした場合の曲げモーメントの増加にとも
なう変化であり、図6.8(a)に対応している。左上の端の図はガスケット座面のメッシュ分割図である。曲げモーメントが作用していない時は、ほぼ同心円状に面圧が分布しているが、曲げモーメントの増加にともない図の上部の圧縮側では接触面積が増加し、また下部の引張り側では接触面積が減少している。そして最終的に引張り側から漏れが生じる結果となっている。図6.10(b)は曲げモーメントを1kN・m一定として内圧を増加させた場合の結果である。内圧が零で曲げモーメントのみ作用する場合、圧縮側
の接触面積が大きく、引張り側は小さくなっている。内圧の増加にともなって、ほぼ同心円状に接触面積が減少しており、最終的に図の下部の曲げモーメントによる引張り側から漏れが生じる結果となっている。

図 6.11 は、図 6.10 に対応してガスケット座面外縁部の円周方向の面圧分布を示している。θ = 0.0° が引張り側で、θ = 180.0° が圧縮側である。図 6.11(a) より、曲げモーメントの増加にともない引張り側 (θ = 0.0°) の面圧が著しく減少し、逆に圧縮側では面圧が増加していることがわかる。図 6.7 と同様に、曲げモーメントが作用していない
場合は、ボルトに近い点、すなわち45°の周期で面圧が低くなっており、この傾向は曲げモーメントが増加しても変わらない。また内圧を増加させた場合は、図6.11(b)より引張り側と圧縮側において、ともに面圧が低下しているが、その傾向は前者で顕著である。

6.6 結言

金属平形ガスケットを使用した場合の管フランジ締結体の力学的特性を、実際の機器に近い三次元モデルを用いることにより、弾性接触問題として有限要素法により評価を行った結果以下のような結論を得た。

1. ガスケットの剛性が低くなるほど、初期締付け時のガスケット座面接触面積は広く、面圧は一様分布に近づき、さらに内圧の増加に対するボルト軸応力の変化率は小さくなる傾向がある。
2. 荷重として曲げモーメントが作用する場合、引張り側のガスケット座面圧の変化は圧縮側に比べて顕著である。
3. ガスケット座面外縁の円周方向の面圧分布は、初期締付け時において隣接するボルト穴との対称部分が最も高くなり、この傾向は荷重が増加しても変化しない。
4. 荷重の増加にともなうボルト軸応力の変化を実験により測定し、解析値と比較することにより本研究において用いた解析手法の妥当性を確認した。
第Ⅲ部
ガスケットの非線形挙動を考慮した管フランジ締結体の特性評価
第7章

ガスケットの応力-ひずみ関係の同定

7.1 緒言

ジョイントシートガスケットやうず巻形ガスケットの厚さ方向の剛性は、フランジやボルトに比べて極端に低いため、管フランジ締結体の特性はガスケットの挙動に強く影響を受ける。また、これらのガスケットは圧縮過程において、強い非線形特性およびヒステリシス特性を示すことが知られている。このため、ジョイントシートガスケットやうず巻形ガスケットを用いた管フランジ締結体の特性を評価することは非常に困難である。

このようなガスケットの応力-ひずみ関係をモデル化する方法としては、最も簡単な線形弾性体を仮定する方法が多く用いられてきた（58, 72, 73）。通常、管フランジ締結体はボルトの締付けを行った後、内部流体による内圧を受ける。この時、ガスケットはボルト締付け時に圧縮、内圧作用時に除荷される。ガスケットの応力-ひずみ曲線は負荷時と除荷時で異なった曲線を描くことが知られており、ガスケットを線形弾性体とするモデル化では、管フランジ締結体の特性を連続して評価することは困難である。

この問題を解決するために永田らは（75, 76），ガスケットの圧縮過程と除荷過程のヤング率を変化させ、管フランジ締結体の締付け、内圧負荷、曲げモーメント負荷過程を連続して評価することのできるガスケットのモデル化を提案している。しかしながらガスケットのヤング率を算出する際、どのガスケット応力を参照値とするのかなどの問題がある（77）。また、ボルトの締付け力を変化させて管フランジ締結体の特性を評価する場合、ガスケットの応力レベルが変わると、ヤング率を変化させる必要が生じる。
図 7.1 うず巻形ガスケットの構造（再記）

以上のような点を考慮すると、管フランジ締結体の特性を様々な条件下で精度良く評価するためには、ガスケットの非線形挙動を考慮する必要があると考えられる。そのためには、まず複雑な挙動を示すガスケットのデータの整理方法を確立することは大変有効である。そこで本章では、強い非線形挙動を示すガスケットの応力-ひずみ関係を同定する方法を提案する。ガスケットとしては、石綿ジョイントシートガスケットとうず巻形ガスケットを対象とする。

7.2 試験方法

7.2.1 試験ガスケット

使用するガスケットは、日本パルカー工業（株）製の石綿ジョイントシートガスケットとうず巻形ガスケットである。

石綿ジョイントシートガスケットは、長繊維のクリソイタイル石綿を主材とし、これに耐熱・耐化学薬品性バインダーと少量の無機充てん材を混和して加熱ロールで加硫したものである（14）。

うず巻形ガスケットは、図 7.1 に示すように V 字形断面の金属製フープと緩衝材で
Gasket No.1: 石綿ジョイントシートガスケット

Gasket No.2: 内外輪付きうず巻形ガスケット（JIS B 2404 D–40K–50）

Gasket No.3: 基本形うず巻形ガスケット（JIS B 2404 A–M–50）

Gasket No.4: 外輪付きうず巻形ガスケット（JPI 150-4）

図 7.2 圧縮試験に用いたガスケットの形状寸法

あるフィラーとを重ね合わせ、うず巻状にかたく巻き込んだものである(44)。ここでは、フープおよび内外輪材は SUS304、フィラー材としては特殊石綿紙を用いたガスケットを対象としている。

今日の石綿規制のため、今後石綿繊維を用いたガスケットの使用は減少していくこ
とが予想される(106) しかししながら、アラミド繊維などを用いた新しいガスケットに比べて、石綿繊維を用いたガスケットは、その圧縮特性に対するメーカー間の差が小さいと言われている。また、本研究では新しいガスケットの挙動評価が目的ではなく、複雑な挙動を示すガスケットのデータ整理方法およびこれらのガスケットを用いた管フランジ締結体の特性評価が目的であるため、これまで長い間用いられてきた石綿繊維を用いたガスケットを対象としている。

ここでは以下の4種類のガスケットを試験の対象としている。

Gasket No.1：石綿ジョイントシートガスケット
Gasket No.2：内外輪付きうず巻形ガスケット（JIS B 2404 D–40K–50）
Gasket No.3：基本形うず巻形ガスケット（JIS B 2404 A–M–50）
Gasket No.4：外輪付きうず巻形ガスケット（JPI 150-4）

各ガスケットの寸法を図7.2に示している。図中、黒く塗りつぶした箇所がガスケット本体であり、斜線部は内輪または外輪を示している。Gasket No.1の石綿ジョイントシートガスケットは試験用に設定した寸法である。また、Gasket No.2とNo.3のうず巻形ガスケットの寸法形状はJIS B 2404に準拠しており、呼び径50mmの管フランジに適用される。うず巻形ガスケットの基本形は、みぞ形フランジはめ込み形フランジに用いられる。Gasket No.4の外輪付きうず巻形ガスケットは、JPI 150lb 4inの管フランジに使用される。石綿ジョイントシートガスケットは厚さ3mm、うず巻形ガスケットは厚さ4.5mmのものを対象としている。

7.2.2 試験手順

石綿ジョイントシートガスケットやうず巻形ガスケットの応力-ひずみ関係は、除荷曲線と再負荷曲線においてヒステリシス特性を示す。また、除荷曲線の傾きは除荷を開始する負荷曲線上の応力レベルによって異なることも知られている。これらの点を考慮し、ここでは圧縮試験において負荷と除荷を繰り返すサイクル試験を行う。

各試験ガスケットに対する試験手順は以下の通りである。いずれも平均ひずみ速度は0.001[/sec]としている。

Gasket No.1
最大のひずみ0.1まで0.01ずつ負荷と除荷を繰り返す。
图 7.3 压缩试验获得的垫圈的应力-应变关系

Gasket No.1

Gasket No.2

Gasket No.3

Gasket No.4
図 7.4 応力-ひずみ関係の同定手順 1（石綿ジョイントシートガスケット）

Gasket No.2 & 3
最大のひずみ 0.3 まで 0.03 ずつ負荷と除荷を繰り返す。

Gasket No.4
最大の圧縮ひずみ 0.24 まで 0.03 ずつ負荷と除荷を繰り返す。
各ガスケットの圧縮試験により得られた応力-ひずみ関係を図 7.3 に示している。
7.3 応力-ひずみ関係の同定手順と同定結果

図 7.3 からわかるように、いずれのガスケットも除荷曲線と再負荷曲線においてヒステリシス特性を示している。しかしながら、管フランジ締結体の使用環境において、一旦負荷されたガスケットが非常に低い応力レベルまで除荷し、さらにその点から再負荷することは少ないと考えられる。そこで、再負荷時も除荷曲線を通ると仮定する。

Gasket No.1 の石綿ジョイントシートガスケットを対象に、図 7.4 と図 7.5 を用いて応力-ひずみ関係の同定手順を説明する。
(1) 測定値から除荷曲線のみを取り出し、各除荷曲線上の最大ひずみと最大応力を ε_y, σ_y とする。これらの値は、除荷が開始した時点の負荷曲線上のひずみと応力に対応する。また、この点から完全に除荷したときの残留ひずみを ε_r とする。

(2) $(\varepsilon_y, \sigma_y)$ の関係を指数関数 $\sigma = a \{\exp(b \cdot \varepsilon) - 1\}$ を用いて最小二乗法で近似を行う。その結果、式 $\sigma = 12.6 \{\exp(19.6 \cdot \varepsilon) - 1\}$ が得られた。

(3) 図 7.3 からわかるように、除荷曲線の勾配は除荷開始時の応力レベルに依存する。そこで、ε_r と ε_y の関係を検討する。ここでは、$\varepsilon_r = 0.47 \cdot \varepsilon_y$ という線形関係が得られた。

(4) 除荷曲線を指数関数 $\sigma = \alpha \exp(\beta \cdot \varepsilon) + \gamma$ で近似する。この時、除荷曲線は 2 点 $(\varepsilon_y, \sigma_y)$ と $(\varepsilon_r, 0)$ を通るため、式中の未知数は 1 つとなる。ここで、β と ε_y の関係を検討すると、$\beta = 431.0 \exp(-37.9 \varepsilon_y) + 57.6$ という関係が得られた。

以上のような手順により、各ガスケットに対して応力-ひずみ関係を同定した結果をつぎに示す。なお、式中の応力の単位は MPa である。

Gasket No.1 : 石綿ジョイントシートガスケット

負荷時:

$$\sigma = 12.6 \{\exp(19.6 \varepsilon) - 1\}$$

除荷・再負荷時:

$$\sigma = \alpha \exp(\beta \varepsilon) + \gamma$$

$$\alpha = \frac{\sigma_y}{\exp(\beta \varepsilon_y) - \exp(\beta \varepsilon_r)}$$

$$\beta = 431.0 \exp(-37.9 \varepsilon_y) + 57.6$$

$$\gamma = -\alpha \exp(\beta \varepsilon_r)$$

$$\varepsilon_r = 0.47 \cdot \varepsilon_y$$

Gasket No.2 : 内外輪付きうず巻形ガスケット

負荷時:

$$\sigma = 65.2 \cdot \varepsilon + 27.3 \times 10^2 \cdot \varepsilon^2 - 17.4 \times 10^3 \cdot \varepsilon^3 + 32.1 \times 10^4 \cdot \varepsilon^4 - 17.5 \times 10^5 \cdot \varepsilon^5 + 28.8 \times 10^5 \cdot \varepsilon^6$$

除荷・再負荷時:

$$\sigma = \alpha \exp(\beta \varepsilon) + \gamma$$

$$\alpha = \frac{\sigma_y}{\exp(\beta \varepsilon_y) - \exp(\beta \varepsilon_r)}$$

$$\beta = 103.3 \cdot \exp(-9.9 \cdot \varepsilon_y) + 63.6$$

$$\gamma = -\alpha \exp(\beta \varepsilon_r)$$
\[\varepsilon_r = 1.25 \cdot \varepsilon_y^2 + 0.47 \cdot \varepsilon_y \]

Gasket No.3: 基本形うず巻形ガスケット

負荷時:
\[\sigma = 0.88 \cdot \varepsilon + 37.0 \times 10^2 \cdot \varepsilon^2 - 25.1 \times 10^3 \cdot \varepsilon^3 + 75.6 \times 10^3 \cdot \varepsilon^4 - 99.3 \times 10^3 \cdot \varepsilon^5 + 43.0 \times 10^3 \cdot \varepsilon^6 \]

除荷・再負荷時:
\[\sigma = \alpha \exp(\beta \varepsilon) + \gamma \]
\[\alpha = \frac{\sigma_y}{\exp(\beta \varepsilon_y) - \exp(\beta \varepsilon_r)} \]
\[\beta = 958.0 \cdot \exp(-48.4 \cdot \varepsilon_y) + 91.8 \]
\[\gamma = -\alpha \exp(\beta \varepsilon_r) \]
\[\varepsilon_r = 1.25 \cdot \varepsilon_y^2 + 0.47 \cdot \varepsilon_y \]

Gasket No.4: 外輪付きうず巻形ガスケット

負荷時:
\[\sigma = 9.4 \{ \exp (9.5 \cdot \varepsilon) - 1 \} \]

除荷・再負荷時:
\[\sigma = \alpha \exp(\beta \varepsilon) + \gamma \]
\[\alpha = \frac{\sigma_y}{\exp(\beta \varepsilon_y) - \exp(\beta \varepsilon_r)} \]
\[\beta = 646.6 \cdot \exp(-44.9 \cdot \varepsilon_y) + 94.4 \]
\[\gamma = -\alpha \exp(\beta \varepsilon_r) \]
\[\varepsilon_r = 2.09 \cdot \varepsilon_y^2 + 0.24 \cdot \varepsilon_y \]

以上の同定結果を，図7.6から図7.9に実線で示している。図7.6の石綿ジョイントシートガスケットの試験結果は，図を見やすくするために除荷曲線のみ示している。いずれも同定結果は試験結果とよく一致しており，ここで対象としたガスケットの特性をよく表しているといえる．
図 7.6 ガスケットの応力-ひずみ関係（Gasket No.1：石綿ジョイントシートガスケット）

図 7.7 ガスケットの応力-ひずみ関係（Gasket No.2：内外輪付きうず巻形ガスケット）
図 7.8 ガスケットの応力-ひずみ関係 (Gasket No.3: 基本形うず巻形ガスケット)

図 7.9 ガスケットの応力-ひずみ関係 (Gasket No.4: 外輪付きうず巻形ガスケット)
7.4 結言

複雑な挙動を示すガスケットの応力-ひずみ関係を同定する方法を提案し、その妥当性を確認した。本章で提案したガスケットの応力-ひずみ関係の整理方法は、有限要素解析などの数値解析のみならず、一般に行われている材料力学や弾性論に基づくボルト締結体の設計にも非常に有効であると考える。また、ガスケットとして石綿繊維を用いたものを対象としたが、それ以外の材質を用いたガスケットに対しても、本手法は適用できると考えられる。
第8章

管フランジ締結体のボルト締付け過程の有限要素解析

8.1 緒言

第4章では、金属平形ガスケットを用いた管フランジ締結体のボルト締付け過程をシミュレーションすることのできる有限要素解析手法を提案した。そして、この解析方法を用いてJIS B 2238呼び圧力40K, 呼び径50mmの管フランジを対象に、純アルミ材の金属平形ガスケットを用いた管フランジ締結体の締付け特性を評価した。その結果、座面形状が大平面座の場合、各ボルトを1本ずつ逐次締付けた時の締付け完了時のボルト軸力のばらつきは、最大約15%であることを示した。

ジョイントシートガスケットやうず巻形ガスケットは、その厚さ方向の剛性が非常に小さいため、ボルトの締付けによる管フランジの軸方向変位は、金属平形ガスケットを用いた場合より大きくなる。このため、多数のボルトを1本ずつ締付ける際のボルト間の弾性相互作用は、金属平形ガスケットを用いた場合よりも顕著に現れる。実際に、これらのガスケットを用いた管フランジ締結体において、弾性相互作用に起因するボルト軸力のばらつきは、90%以上に達することもあるという報告(80)がある。しかしながら前章でみたように、ジョイントシートガスケットやうず巻形ガスケットは非常に複雑な挙動を示すため、第4章で示した解析手法ではボルト締付け過程を精度良く評価することは困難である。

そこで本章では、剛性が低く複雑な挙動を示すガスケットを用いた管フランジ締結体のボルト締付け過程をシミュレーションすることのできる有限要素解析手法を提案
する．ここでは，ガスケットとして石綿ジョイントシートガスケットとうず巻形ガスケットを対象とする．また，解析手法の妥当性は，実験結果と比較することにより確認する．

8.2 解析方法

8.2.1 増分計算

ボルトとフランジ材料は線形弾性体と仮定している．このため解析の非線形性は，ガスケット材料特性および接触状態の記述により生じる．本解析においては，この非線形性を増分法により線形化して扱う．ここで，各増分段階における線形的取り扱いを許容する増分率は，以下の各条件を満足する最小値とする．

(1) 現増分段階の接触条件を破らない．
(2) ガスケット要素の再負荷過程において，除荷開始時の負荷曲線上の応力値を越えない．
(3) ガスケット要素のひずみ増分量および応力増分量がある一定値を越えない．

8.2.2 一次元ガスケット要素

ジョイントシートガスケットは厚さ 0.5mm ～3.0mm，うず巻形ガスケットは 1.6mm ～6.4mm の範囲のものが多く用いられているようである．また図 7.1 に示すように，うず巻形ガスケットは，フープとフィラーを重ね合わせたものを巻き付けて作製されており，構造的に複合化されている．このため，ガスケットの挙動を評価する際，材料の単軸試験を行うことは非常に困難である．このような理由のため，通常前章で示したように製品化されたガスケットの圧縮試験を行うことで，その応力～ひずみ関係を評価している．

このように一般に広く行われている試験のデータを用いて管フランジ締結体の特性を評価することは，工業的に非常に実用性が高いと考えられる．さらに，管フランジ締結体の締付けおよび力学的な特性は，ガスケットの厚さ方向の剛性に大きく支配される．これらの点を考慮し，本解析ではガスケットを厚さ方向にのみ剛性を有する非線形一次元要素としてモデル化する．これ以降，この要素を「一次元ガスケット要素」
と呼ぶことにする。このようなモデル化を行うと，前章で得られたガスケットの応力–ひずみ関係式を直接使用することができる。ここで導入した一次元ガスケット要素は，次節で示す三次元有限要素法に組み込まれる。

8.2.3 接触問題

接触問題の解析方法としては，従来の手法（88）を，三次元多体接触問題として多数のボルトを逐次締付けた場合の解析が可能なように拡張する。ボルト頭部座面において，完全固着と摩擦係数を零とおいた場合の結果を比較したところ，ほとんど差が見られなかったので，接触状態としては全ての接触面において「離隔」および「固着」の2種類のみを考慮する。

8.2.4 全体剛性方程式

解析は対称性を考慮して，片側の管フランジのみをモデル化して実施する。ここで，ボルトとナットは単一の弾性体として扱う。さらに，多数ボルトをまとめて1体とみなすと，解析はボルト・ナットの等価モデル，フランジおよびガスケットの3体，およびボルト頭部座面とガスケット座面の2接触面からなる3体2接触面問題に帰着される。この場合，全体剛性方程式は次のようになる。

\[
\begin{bmatrix}
K_e & 0 & 0 & K_{eC1} & 0 \\
0 & K_f & 0 & K_{fC1} & K_{fC2} \\
0 & 0 & K_g & 0 & K_{gC2} \\
K_{C1e} & K_{C1f} & 0 & K_{C1} & 0 \\
0 & K_{C2f} & K_{C2g} & 0 & K_{C2}
\end{bmatrix}
\begin{bmatrix}
\Delta u_e \\
\Delta u_f \\
\Delta u_g \\
\Delta R_1 \\
\Delta R_2
\end{bmatrix}
=
\begin{bmatrix}
\Delta Q_e \\
\Delta Q_f \\
\Delta Q_g \\
\delta_1 \\
\delta_2
\end{bmatrix}
\] (8.1)

ここで，\([K_e]，[K_f]，[K_g]\) はそれぞれ，多数ボルトを一体とみなしたボルト・ナット，フランジおよびガスケットの剛性マトリックスである。\([K_g]\) は対角成分にガスケットの要素剛性を持つ対角マトリックスであり，以下のように表される。

\[
[K_g] =
\begin{bmatrix}
k_{g1} & 0 & 0 & 0 \\
0 & k_{g2} & 0 & 0 \\
0 & 0 & k_{g3} & 0 \\
0 & 0 & 0 & k_{gm}
\end{bmatrix}
\] (8.2)

ここで，\(m\) はガスケット座面の接触節点数，つまり一次元ガスケット要素の数になる。
各ガスケット要素の剛性 k_{gi} は、前章で定義した応力-ひずみ関係式の負荷曲線または除荷曲線の勾配に対応しており、増分計算の過程において変化する。

その他のマトリックスは接触に関するマトリックスである。また、$\Delta u_c, \Delta Q_c$ などは、それぞれ節点変位増分と等価節点力増分である。δ_i は接触節点の初期不整量であり、ΔR_i は接触状態により変化する等価節点力増分である。ここで、i は接触面番号であり、1がボルト頭部座面、2がガスケット座面を示している。

解析において、式 (8.1) 中の $[K_c], [K_f]$、および全体剛性マトリックスの左下三角部分にある接触に関するマトリックス $[K_{C1e}]$ などは、その性質上全増分段階を通して一定である。そのため、これらのマトリックスは一番初めの増分段階における連立一次方程式を解く過程において、一度だけ分解しておけばよく、効率的に計算を実施できる。

8.2.5 解析モデル

本解析において用いた有限要素モデルを図 8.1 に示している。対象とする管フランジは、第 II 部において用いた JIS B 2238 呼び圧力 40K、呼び径 50mm の大平面座を有するものである。使用するガスケットに応じて管フランジのガスケット座面部のメッシュ分割を変えていく。ガスケットには、石綿ジョイントシートガスケット（前章：Gasket No.1—内外圧は異なる）と、内外圧付きうず巻形ガスケット（前章：Gasket No.2）を用いている。これらのガスケットの座面寸法を図 8.2 に示している。後述する実験で用いる石綿ジョイントシートガスケットの外径はボルト円筒部に内接する寸法となっているが、解析では一次元ガスケット要素を用いているためフランジ座面外径（$\phi 105$）までをモデル化している。うず巻形ガスケットの場合、ガスケット外径（$\phi 79$）はフランジ座面外径（$\phi 105$）より小さくなっている。また、内気と外気はモデル化していない。この管フランジを、メートル並目ねじ M16 を有する 8 本のボルトで締付ける。ボルト・ナットの等值モデルおよび管フランジのヤング率とポアソン比は、それぞれ 200GPa および 0.3 一定としている。

8.2.6 解析手順

ボルト軸力は、ボルト円筒部の対称面節点に軸方向強制変位を与えることにより生じさせる。ここで、解析手順を図 8.3 に従って具体的に説明する。図 8.3 は 3 本のボルトで締結される管フランジを対象とし、ボルトを 1 本ずつ初期締付け力 F_i で逐次締付
(a) ジョイントシートガスケットを用いる場合

(b) うず巻形ガスケットを用いる場合

図 8.1 有限要素モデル
図8.2 ガスケット座面寸法

値を示している。図中の \(u_1, u_2, u_3 \) は、各締付け完了時におけるボルトの対称面軸方向の制限変位量である。

bolt 1 の締付け
適当な制限変位増分を bolt 1 の対称面節点にのみ与え、bolt 1 の軸力が所定の値になるまで増分計算を繰返す。この場合、他のボルトの対称面節点の軸方向変位は完全に拘束されている。bolt 1 の軸力が所定の値 \(F_1 \) になった時点での対称面における軸方向変位を \(u_1 \) とする。

bolt 2 の締付け
bolt 1 の変位を \(u_1 \) に保った状態で、bolt 2 に制限変位を与える。その場合、bolt 3 の軸方向変位は拘束されている。増分計算の結果、bolt 2 の軸力が所定の値 \(F_1 \) になった時点での軸方向変位を \(u_2 \) とする。

bolt 3 の締付け
Initial State

Tighten bolt 1

Tighten bolt 2

Tighten bolt 3

図 8.3 解析手順
表 8.1 各ボルトを等しい初期締付け力で逐次締付ける場合のボルト対称面変位

<table>
<thead>
<tr>
<th>Bolt-up Sequence k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>1 u_1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>2 u_1 u_2 0 0 0 0 0 0</td>
</tr>
<tr>
<td>3 u_1 u_2 u_3 0 0 0 0 0</td>
</tr>
<tr>
<td>4 u_1 u_2 u_3 u_4 0 0 0 0</td>
</tr>
<tr>
<td>5 u_1 u_2 u_3 u_4 u_5 0 0 0</td>
</tr>
<tr>
<td>6 u_1 u_2 u_3 u_4 u_5 u_6 0 0</td>
</tr>
<tr>
<td>7 u_1 u_2 u_3 u_4 u_5 u_6 u_7 0</td>
</tr>
<tr>
<td>8 u_1 u_2 u_3 u_4 u_5 u_6 u_7 u_8</td>
</tr>
</tbody>
</table>

bolt 3 に対しても同様の作業を行う。最終的に bolt 3 の締付けが完了した時点で、各ボルトの対称面軸方向変位は、u_1, u_2, u_3 となる。そして、この状態において各ボルトに残留する軸力 F_{31}, F_{32}, F_{33} が、各ボルトを等しい初期軸力 F_i で逐次締付けた場合に対するばらつきを示すことになる。

本章で対象とする 8 本のボルトで締付けられる管フランジの場合、ボルト締付け過程のボルト対称面の変位は表 8.1 のようになる。表中の u_1, u_2 等は、行番号に対応するボルトの締付けが完了した時点における、各ボルトの対称面軸方向の強制変位量である。

8.3 実験方法

本研究で提案する数値解析の妥当性を確認するために、管フランジ締結体の締付け実験を行う。実験に使用した装置は、ガスケット以外第 4 章で用いたものと同じである。締付け順序は図 8.4 に示した通りである。実験では、初めに全てのボルトを所定の締付け力の 5% で均一に締付けていく。この状態を初期状態とし、ボルト軸力を評価する。各ボルトの円筒部には、軸力を測定するために 2 枚のひずみゲージを 180 度離して張付けてい。締付けは、所定の軸力を与えるために静ひずみ計の出力を指針として、スパンにより実施される。
8.4 解析結果

8.4.1 ボルト軸力の変化

各ボルトを図8.4の締付け順序に従って初期締付け軸力 \(F_i = 10.1 \text{kN} \)（ボルト軸応力50MPa）で逐次締付けた場合の、締付け完了時のばらつきを図8.5に示している。比較のために、厚さ3mmの純アルミ材金属平形ガスケットを用いた解析結果も同時に示している。また、実験結果は2回の実験の平均値として示している。横軸は図8.4に示
図 8.6 締付け過程の bolt 1 の軸力変化

すポルト番号，縦軸は締付け完了時のポルト軸力 F_f を初期締付け軸力 F_i で除して無次元化して示している．つまり，値が 1 に近いほど締結完了時のばらつきが少ないことになる．図から，いずれのガスケットを使用した場合も bolt 1～bolt 4 の軸力が低下し，bolt 5～bolt 8 中の数本のポルトで締付け軸力 F_i よりも高い値が確認される．

使用するガスケットによる違いを見てみると，ばらつきの大きい順にうず巻形ガスケット，石綿ジョイントシートガスケット，金属平形ガスケットを用いた場合となっている．金属平形ガスケットは，他の 2 つのガスケットより剛性がかなり高いため，軸力のばらつきは比較的小さくなっている．石綿ジョイントシートガスケットとうず巻形ガスケットを用いた場合，ばらつきの傾向は比較的似ているが，うず巻形ガスケットの方が各ポルト間の軸力の変化が大きいことがわかる．この原因はガスケットの剛性と図 8.2 に示すガスケット座面の寸法の違いにあると考えられる．後者に関しては，石綿ジョイントシートガスケットはフランジ座面の一番外側まで接触しているが，うず巻形ガスケットのガスケット本体の外径はフランジ座面外径より小さく，第 4 章で検討した小平面座のようないくっている．このため，うず巻形ガスケットを用いた方がフランジローテーションが大きくなり，ボルトの軸力が変化しやすくなる．

図 8.6 は bolt 1 の軸力に着目し，ボルト締付け過程の軸力変化を無次元化して示し
たものである。金属平形ガスケットを用いた場合、bolt 1 の両隣に位置する bolt 5 と bolt 8 を締付けた時、弾性相互作用による軸力低下が確認される。しかしながら、その量は他のガスケットを用いた場合と比較すると非常に小さい。石綿ジョイントシートガスケットとわず巻形ガスケットを用いた場合、いずれも bolt 1 の向かい側に位置する bolt 2, bolt 6, bolt 7 を締付けた時、管フランジの口開き変形に起因して軸力が増加している。また、その他の bolt 3, bolt 4, bolt 5, bolt 8 を締付けた時、bolt 1 の軸力は低下している。各ボルトを締付けた時の bolt 1 の軸力の変化はわず巻形ガスケットの方が大きくなっている。図 8.5 と図 8.6 から実験結果は解析結果と比較的よく一致しており、ここで提案している解析手法は妥当であると考えられる。

8.4.2 ボルト締付け過程の管フランジの変形

図 8.7 は、わず巻形ガスケットを用いた場合の bolt 1 と bolt 4 の締付け時と締結完了時における管フランジの変形を、50 倍に拡大して示している。bolt 1 を締付けた時、フランジが てこのように作用して口開き変形を生じ、bolt 2 に反力が生じている。次に bolt 2 を締付けるが、bolt 1 を締付けた時の口開き変形は解消されていないことがわかる。同様な変形が、bolt 3 と bolt 4 の締付け過程においても見られる。締結完了時は、bolt 3 を締付けた時とほぼ同じ変形パターンになっている。このため、bolt 1 と bolt 3 を締付けた時のフランジの口開き変形が締付け完了時まで影響しているといえる。

8.4.3 ガスケット座面圧分布の変化

図 8.8 は、図 8.7 の各過程に対応したガスケットの座面圧分布を示している。図中、ボルトの位置も示している。図 8.8 から、bolt 3 の締付時と締結完了時の面圧分布はほぼ同様になっていることがわかる。これは図 8.7 で示したフランジの変形パターンに対応している。

図 8.9 は、ガスケット座面の外縁部つまり石綿ジョイントシートガスケットの場合 105mm、わず巻形ガスケットの場合 79mm の径を有する部分の円周方向の面圧分布変化を示している。わず巻形ガスケットの場合は、図 8.8 の外周部の面圧値に対応する。石綿ジョイントシートガスケットを用いた解析では、bolt 1 を締付けた時その付近の面圧値が最も高い値を示し、bolt 1 の向かいに位置する bolt 2 付近の面圧値は零となっ
図8.7 ボルト締付け過程の管フランジの変形（うず巻形ガスケット）
8.4.4 3回の締付け作業

前章までは各ボルトを1回ずつ締付ける、つまり1回の締付け作業の場合について検討してきた。しかしながら、実際のボルト締付け作業では、各ボルトを数回ずつ締付けることにより作業を完了するのが一般的である。ここでは、初期軸力を$F_t=10.1\text{kN}$で3回の締付け作業を行い、その時のボルト軸力のばらつきについて検討を行う。図8.10は、うず巻形ガスケットを用いた場合の各pass完了時のボルト軸力のばらつきを示している。pass 1 のばらつきは図8.5と同じである。3回の締付け作業を行っているにも関わらず、pass 3における軸力のばらつきの最大値は60%程度となっていることがわかる。また図8.5同様、2回の締付け実験の平均値も示している。解析値と実験値は比較的よく一致しており、ここで提案した解析手法が複数回の締付け作業を行う場合
図 8.9 ボルト締付け過程のガスケット座面外縁部の面圧分布変化

合にも適用できることが確認できる。

8.5 結言

一般に広く用いられている石綿ジョイントシートガスケットとうず巻形ガスケットを用いた管フランジ締結体について、その締付け特性を有限要素法を用いて評価する
図 8.10 各 pass 完了時のボルト軸力のばらつき（うず巻形ガスケット）

手法を検討した結果，以下に示す結論を得た．

1. 各ボルトを 1 本ずつ逐次締付けた場合に生じるボルト軸力のばらつきを，定量的に評価できる手法を提案した．
2. 強い非線形挙動を示すガスケットを，工業的な実用性の観点から厚さ方向にのみ剛性を有する一次元要素とするモデル化を提案した．
3. 管フランジ締結体の締付け実験により，(1)(2) で示した解析手法の妥当性を確認した．
4. 管フランジ締結体のボルト締付け特性におよぼすガスケットの影響を評価した．
第9章

管フランジ締結体のボルト締付け手順の評価

9.1 緒言

今日の環境規制の強化に対応するため(3)，管フランジ締結体からの内部流体の漏洩量を許容値以下に抑えることを目的として，その設計手順が見直されている(56, 98, 99)。管フランジ締結体が目標とするシール能力を発揮するためには，その組立時に全てのボルトの軸力を均一にすることが重要である。しかしながら，管フランジは隣り合うボルト間の距離が小さいため，すでに締付けを終えているボルトの軸力は他のボルトの締付けの影響を受けやすく，その結果均一な軸力状態を得ることは困難である(83)。そのため，管フランジ締結体の組立は，多数のボルトを1本ずつ締付ける作業を数回くり返すのが一般的である。しかしながら規格化された統一的な締付け手順は存在せず，各企業や作業現場において独自の手順が用いられている。

ところで，ASMEから図9.1に示すような管フランジ締結体の締付け指針が提案されている(86)。この指針は非常に多くの作業回数を必要とするため，特に多数のボルトを使用するフランジにおいては実用上問題がある。さらに，Round 4においては「ナットが回転しないまで」という曖昧な表現も含まれている。このため，より明確でかつ実用的な作業指針を確立することが必要であると考えられる。しかしながら，管フランジとガスケットの組合せは多岐にわたっているが，それらの締付け特性は個々の管フランジ締結体で異なる。そのため，実験による評価は困難で数值解析による体系的な検討が不可欠である。
Install: Hand tighten, then "snug up" to 10-20 ft-lb.
Round 1: Tighten to 20% -30% of Target Torque.
Round 2: Tighten to 50% -70% of Target Torque.
Round 3: Tighten to 100% of Target Torque.
Round 4: Continue tightening the bolts, but on a rotational clockwise pattern until no further nut rotation occurs at the Round 3 Target Torque value.
Round 5: Time permitting, wait a minimum of four hours and repeat Round 4; this will restore the short-term creep relaxation/embedment losses.

9.1 ASME のボルト締付け指針（再記）

本章では、より実用的なボルト締付け指針の提案につながる基礎研究として、有限要素解析による体系的な管フランジ締結体のボルト締付けシミュレーションを実施する。まずはじめに、ボルトの締付け順序と締付け力の増加手順について考察する。つぎに、均一な軸力状態を達成するために必要な締付け作業回数、ボルト締付け過程におけるガスケット座面圧分布変化、トルク法を想定した締付け軸力のばらつきの影響について検討する。なお本研究では、石綿ジョイントシートガスケットを用いた JPI class 150lb と 300lb の管フランジを対象とする。

9.2 解析方法

前章で提案した、管フランジ締結体のボルト締付け過程を評価することのできる解析手法を用いる。

9.2.1 解析対象と有限要素モデル

対象とする管フランジは、JPI class 150lb と class 300lb のスリップオンタイプである。呼び径は、class 150 が 1, 4, 10, 16, 20in の 5 種類、class 300 が 1, 3, 6, 10, 14, 20in の 6 種類を対象としている。各管フランジの寸法を図 9.2 に示している。解析に用いた有限要素モデルの一例を図 9.3 に示している。軸方向の対称性を考慮し、半分のみをモデル化している。その場合、ボルトとナットは解析の効率化を図るために、ねじ部分をボルト頭部と類似の形状に置き換え、単一の弾性体として扱う。
実際の管フランジには様々な配管要素が結合されるため、フランジ端部の拘束条件は種々変化と考えられる。ここでは管部の無いモデルを採用するが、その場合は管部を考慮したモデルより変形剛性が低くなるため、ボルト間の相互作用が大きく、結果として安全側に評価することとなる。ボルト・ナットの等価モデルおよび管フランジのヤング率とポアソン比は、それぞれ200GPaおよび0.3一定とする。

なお、class 300lb 20in フランジの実験では全ねじスタットボルトを使用しているため、実験結果との比較を行う解析はボルトモデルの円筒部径およびボルト頭部高さを変更している。論文中、class 300lb 20in フランジの実験結果と比較を行っている解析結果は、上記のようなモデルを使用している。
図 9.3 有限要素モデル (class 300)

表 9.1 ボルト締付け手順

<table>
<thead>
<tr>
<th>pass</th>
<th>type0</th>
<th>type1</th>
<th>type2</th>
<th>type3</th>
<th>type4</th>
<th>type5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>st</td>
<td>0.2</td>
<td>cw</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0.6</td>
<td>st</td>
<td>0.6</td>
<td>cw</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>st</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>st</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>st</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>st</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>cw</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>cw</td>
<td>1.0</td>
<td>cw</td>
</tr>
</tbody>
</table>

cw : clockwise pattern sequence
st : star pattern sequence

9.2.2 解析条件

図 9.1 の ASME の締付け指針に基づいて、表 9.1 に示す 6 種類の締付け手順を設定する。表中の数字は所定の締付け軸力 F_t に対して各 pass で与える締付け力の割合を示している。また、cw と st はそれぞれ時計回りと対角状のボルト締付け順序を示す。例えば、type1 の pass2 では 0.6F_t の締付け力で各ボルトを時計回りに締付ける。

表 9.1において、type0 が ASME の締付け指針に対応しており、type1 は type0 の締付順序を全て時計回りとしたものである。type2 と type3 は、それぞれ type0 と type1 の pass1 と pass2 を省略した締付け手順である。type4 と type5 は pass1 から所定の軸力の 100%でそれぞれ対角状と時計回りに締付けを行う。なお、type3 と type5 は基本
9.4 ボルト番号と対角状の締付け順序

ボルトの締付け順序は、星型のパターンを使用します。以下の順番で締付きます。

4-bolts: 1 > 3 > 2 > 4
8-bolts: 1 > 5 > 3 > 7 > 2 > 6 > 4 > 8
12-bolts: 1 > 7 > 4 > 10 > 2 > 8 > 5 > 11 > 3 > 9 > 6 > 12
16-bolts: 1 > 9 > 5 > 13 > 3 > 11 > 7 > 15 > 2 > 10 > 6 > 14 > 4 > 12 > 8 > 16
20-bolts: 1 > 11 > 6 > 16 > 3 > 13 > 8 > 18 > 5 > 15 > 10 > 20 > 2 > 12 > 7 > 17 > 4 > 14 > 9 > 19
24-bolts: 1 > 13 > 7 > 19 > 4 > 16 > 10 > 22 > 2 > 14 > 8 > 20 > 5 > 17 > 11 > 23 > 3 > 15 > 9 > 21 > 6 > 18 > 12 > 24

図9.4 ボルト番号と対角状の締付け順序

9.3 解析手法の実用性の検討

前章で提案した、管フランジ締結体のボルト締付け過程を評価することのできる有限要素解析の実用性を検討するために、2種類の管フランジ締結体に対してボルト締付け実験を行い、解析結果と比較する。

9.3.1 実験方法

実験にはclass 150lb 4in と class 300lb 20in の管フランジを使用する。
class 150lb 4in フランジの実験装置を図9.5(a)に示している。締付けにはメートル
(a) class 150lb 4in フランジ

(b) class 300lb 20in フランジ

図 9.5 実験装置
並目ねじM16のボルトを8本使用し、ボルト軸力はボルト円筒部側面に貼ったひずみゲージを用いて測定する。これらのボルトは前章で行った実験と同じものを用いている。

class 300lb 20inフランジの実験装置を図9.5(b)に示している。ボルトには1 1/4-8ユニファイねじを有する全ねじスタッドボルトを24本使用している。ボルト締付け過程における軸力変化をひずみゲージを用いて測定するため、ボルト中心付近のねじ山を長さ48mmにわたって、直径27mmまで旋削している。ひずみゲージの貼り付けには、ボルトの曲げひずみと温度変化の影響を消去できるゲージアクティブダミーフ法を採用し、予備実験において校正を行っている。ボルトの締付けは、ひずみゲージを接続した静ひずみ計の出力を指針として、10倍トルク倍力装置を介してトルクレンチを用いて行う。いずれの管フランジに対しても、締付けを開始する前に全てのボルトを所定の締付け力Ftの5％で一緒に締付けている。

9.3.2 ボルト軸力の影響

図9.6は、class 300lb 20inフランジに対して、所定の締付け力Ftを49.0kNと98.1kNと設定し、表9.1のtype4の締付け手順を採用した時のpass1完了時の軸力状態を示している。横軸は図9.4に示すボルト番号、縦軸は締付け完了時のボルト軸力Ftを所定の軸力Ftで除して無次元化して示している。なお、これらの締付け力を用いるのは本小節のみである。実験は2回ずつ実施している。いずれの締付け力に対しても、実験結果と解析結果は比較的よく一致している。このため、前章で提案した解析手法は、口径の大きな管フランジにも適用が可能であり、ガスケットの応力レベルが変化してもボルト締付け過程を精度よく再現できることが確認できる。また、所定の軸力が高いFt=98.1kNの方が両者がより近い値を示している。

9.3.3 複数回の締付け作業

図9.7と図9.8は、各pass完了時にボルトに残留している軸力の解析結果と実験結果を比較したものである。締付け手順は、表9.1のtype4とtype5を採用する。なお実験は2回ずつ実施しており、いずれの値も図中に記入されている。横軸は図9.4に示すボルト番号、縦軸は各pass完了時のボルト軸力Ftを所定の軸力Ftで除して無次元化して示している。図9.7の4inフランジではpass3まで、図9.8の20inフランジに関し
図9.6 pass 1 完了時のボルト軸力状態（class 300lb 20in, type 4）

では、pass1, pass2, pass3, pass5 の値を示している。いずれの管フランジ、締付け手順においても実験値と解析値は良く一致しており、前章で提案した有限要素解析手法は、数回の締付け作業を行う場合でも精度良くボルト軸力の変化をシミュレーションできることを確認した。
図9.7 各pass完了時のボルト荷重状態（class 150lb 4in, M16-8bolts, $F_t=33.2kN$）

9.4 解析結果

9.4.1 ボルト荷重の変化

図9.9と図9.10は、表9.1に示すtype0, type1, type4, type5に従ってボルトの締付解析を行った際の各pass完了時におけるボルト荷重のばらつきの変化を、class 300lb 6inと20inの管フランジに対してそれぞれ示したものです。横軸はpass番号、縦軸は各pass完了時にボルトに残留している荷重Fを所定の荷重F_tで除して無次元化して示している。所定の荷重F_tはガスケット座面の平均面圧値が30MPaとなるように決定しており、6inの場合35.4kN, 20inの場合78.7kNである。
図9.8 各pass完了時のボルト軸力状態（class 300lb 20in, 1 1/4-8UN-24bolts, $F_t=78.7kN$）

対角状に締付けを行うtype0のpass3までとtype4においては、ボルトの軸力が3グループに分かれて変化していることがわかる。また、時計回りに締付けを行うtype1、type5の場合も、6inフランジではbolt1, bolt2-11, bolt12の3グループ、20inフランジではbolt1, bolt2-23, bolt24の3グループに分かれている。これらの3グループは、それぞれ両隣のボルトよりも先に締付けを行うボルト、隣のボルトが1本だけ締付けられた状態で締付けを行うボルト、両隣のボルトが締付けられた状態で締付けを行うボルトに対応している。また各グループ内での軸力のばらつきは、20inフランジの方が6inフランジよりも小さくなっている。このことは、20inフランジの場合、一本のボルトの締付けがその近傍のボルトの軸力にのみ影響を与えるが、6inフランジの場合、あるボルトの締付けが広い範囲のボルトに影響を与えるためである。6inフランジ
図 9.9 各 pass 完了時に各ボルトに残留している軸力の変化 (class 300lb 6in, M20-12bolts, $F_t = 35.4kN$)
図 9.10 各 pass 完了時に各ボルトに残留している軸力の変化 (class 300lb 20in, M33-24bolts, $F_t=78.7kN$)
の場合、ボルトの締付けによるフランジの口開き変形(82)，すなわちあるボルトを締付けると，向かい側のフランジが浮き上がりその付近のボルトの軸力が増加するという現象が生じる．この現象により，6inフランジのtype0とtype4の場合，F/F_tの値が1を超えるボルトが生じている．

ボルトの締付け軸力を徐々に増加させるtype0とtype1では，type4とtype5に比べて同じ作業回数における軸力の達成度が低いことが分かる．この現象は20inフランジの場合特に顕著であり，例えばtype0とtype1のpass3では3回の締付け作業を行っているにも関わらず，ボルト軸力の最低値は0.1F_t以下となっている．

図9.11は，pass3完了時におけるボルト軸力状態を表9.1の全typeに対して示している．横軸は図9.4に示すボルト番号，縦軸はpass3完了時にボルトに残留している軸力Fを所定の軸力F_tで除して無次元化して示している．図9.11より，ボルト軸力の
<table>
<thead>
<tr>
<th></th>
<th>6in</th>
<th>20in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>type0</td>
<td>type1</td>
</tr>
<tr>
<td>pass1</td>
<td>0.120</td>
<td>0.119</td>
</tr>
<tr>
<td>pass2</td>
<td>0.373</td>
<td>0.380</td>
</tr>
<tr>
<td>pass3</td>
<td>0.701</td>
<td>0.706</td>
</tr>
<tr>
<td>pass4</td>
<td>0.869</td>
<td>0.873</td>
</tr>
<tr>
<td>pass5</td>
<td>0.945</td>
<td>0.947</td>
</tr>
<tr>
<td>pass6</td>
<td>0.976</td>
<td>0.977</td>
</tr>
</tbody>
</table>

状態は適用する締付け順序に大きく依存することが分かる。締付け回数が異なる type2 と type4、type3 と type5 をそれぞれ比較すると、軸力の分布傾向はほぼ同じで type4 と type5 の方が全体的に値が高くなっている。また、締付け順序は同じで締付け力の増加順と作業回数が異なる type0 と type2、type1 と type3 では、ほぼ同様の変化を示していることが分かる。

9.4.2 平均ポルト軸力の変化

管フランジ締結体のポルト締付け過程においては、所定のポルト軸力値で均一な軸力状態を達成することが望まれる。図 9.9 と図 9.10 から明らかのように、締付け作業回数が増加するほど全てのポルトの軸力が所定の軸力値に近づいている。そこで、各 pass 完了時におけるポルト軸力の平均値 F_m を締付け達成度の指標とし、その変化を考察する。

表 9.2 は、表 9.1 の各締付け手順に対して、各 pass 完了時にポルト軸力 F の平均値 F_m がどのように変化するか class 300lb 6in と 20in の管フランジに対して示したものである。ここで表中の値は F_i で除して無次元化して示している。type0 と type1、type2 と type3、type4 と type5 をそれぞれ比較すると、ポルト軸力の平均値 F_m はほとんど
図 9.12 各 pass 完了時の平均ポルト軸力の変化に対する管フランジの呼び径の影響 (type 5)

同様に変化していることが分かる。このことから、締付け順序はポルト軸力の平均値 F_m にあまり影響しないことが分かる。また、type0 と type2, type1 と type3 をそれぞれ比較すると、pass3 における差はいずれも 0.1 以下であり、それまでの 2 回の締付け作業の有無を考えるとその差是非常に小さい。このことは、ポルト軸力を徐々に増加させるよりも締付け初期から所定の軸力値で締付ける手順の有効性を裏付けるものである。

以上の結果より、効率のよい締付け作業を行うためには、はじめから所定の軸力で時計回りに締付けを行う type5 の手順を採用すればよいと考えられる。

type5 の締付け手順を適用し、種々の管フランジ呼び径に対してポルト締付けシミュ
レーションを行った結果を図9.12に示す．横軸はpass番号，縦軸は各pass完了時の
平均軸力F_mを所定の軸力F_iで除して無次元化して示している．4本のボルトで締付
けられる1inフランジでは，口開き変形の影響でpass1からF_mがF_iを超えている．
また，わずかではあるが，8本のボルトで締付けられるclass 300lb 3inフランジでも
pass5からF_mがF_iを超えている．その他の管フランジでは，締付け作業回数の増加に
伴ってF_mがF_iに下から漸近している．class 150とclass 300を比較すると，全体的に
class 150の方が少ない締付け回数でF_iに収束している．これは隣り合うボルトの間隔
がclass 150の方が広く，ボルト間の相互作用が小さいためである．また，管フランジ
の呼び径が大きくなるほど，F_mがF_iに収束するために必要な締付け回数が多くなっ
ている．特に，class 300の14inや20inの管フランジでは，7回締付け作業をくり返し
た後もF_mとF_iの値に開きがある．したがって，作業労力の観点からはある程度のボ
ルト軸力のばらつきを許容して締付け作業回数を決定する必要があると考えられる．

9.4.3 ガスケット座面圧力分布変化

type5の締付け手順を採用した場合，片締めによるガスケットの破損が心配される．
図9.13はclass 300の1, 3, 6, 20inの管フランジに対して，type5の手順を採用した
場合のpass1，pass2，pass3，pass7完了時におけるガスケット座面外縁部の円周方向
の面圧分布を示している．横軸の円周方向座標は，bolt1の中心を0度として，図9.4
に示したボルト番号の方向にっている．

4本のボルトで締付ける行う1inフランジの場合，ガスケット座面圧が円周方向に大
きく変化しており，pass2以降はその値がほとんど変化していないことが分かる．8本
締めの3inフランジにおいてもpass3以降面圧はあまり変化しておらず，pass7完了時
においても一様な面圧分布は得られていない．その理由は，4本と8本締めの管フラン
ジでは口開き変形が大きく，締付け作業を繰り返しても締付け作業初期の変形が回
復しないことによる．このため，小径の管フランジに対してtype5の締付け手順は必
ずしも適切ではないと考えられる．

しかしながら，12本のボルトで締付けられる6inフランジでは円周方向の面圧の変
化は比較的小さく，最終的にはほぼ一様な分布となっている．20inフランジに関しては，
締付け作業初期から比較的やや分布となっている．また，いずれの管フランジにつ
いてもガスケット座面外縁部の面圧値は平均値の30MPaより高くなっている．これは
图 9.13 各 pass 完了時におけるガスケット座面外縁部の円周方向の面圧分布 (class 300)
<table>
<thead>
<tr>
<th>Bolt No.</th>
<th>case 1</th>
<th>case 2</th>
<th>case 3</th>
<th>case 4</th>
<th>case 5</th>
<th>case 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>bolt1</td>
<td>1.07</td>
<td>1.02</td>
<td>0.93</td>
<td>0.98</td>
<td>1.04</td>
<td>1.09</td>
</tr>
<tr>
<td>bolt2</td>
<td>1.05</td>
<td>1.05</td>
<td>0.91</td>
<td>0.96</td>
<td>0.96</td>
<td>1.02</td>
</tr>
<tr>
<td>bolt3</td>
<td>0.91</td>
<td>1.10</td>
<td>1.02</td>
<td>1.06</td>
<td>1.07</td>
<td>1.00</td>
</tr>
<tr>
<td>bolt4</td>
<td>1.08</td>
<td>1.07</td>
<td>1.09</td>
<td>1.07</td>
<td>1.01</td>
<td>0.91</td>
</tr>
<tr>
<td>bolt5</td>
<td>0.97</td>
<td>1.03</td>
<td>1.09</td>
<td>1.08</td>
<td>1.09</td>
<td>0.92</td>
</tr>
<tr>
<td>bolt6</td>
<td>0.92</td>
<td>1.05</td>
<td>1.10</td>
<td>1.09</td>
<td>0.91</td>
<td>1.01</td>
</tr>
<tr>
<td>bolt7</td>
<td>0.97</td>
<td>1.06</td>
<td>1.07</td>
<td>0.92</td>
<td>1.05</td>
<td>0.94</td>
</tr>
<tr>
<td>bolt8</td>
<td>0.98</td>
<td>0.96</td>
<td>0.96</td>
<td>1.00</td>
<td>1.05</td>
<td>1.07</td>
</tr>
<tr>
<td>bolt9</td>
<td>1.10</td>
<td>0.96</td>
<td>0.97</td>
<td>0.91</td>
<td>1.09</td>
<td>1.01</td>
</tr>
<tr>
<td>bolt10</td>
<td>0.97</td>
<td>0.93</td>
<td>0.98</td>
<td>0.95</td>
<td>0.97</td>
<td>0.90</td>
</tr>
<tr>
<td>bolt11</td>
<td>1.01</td>
<td>1.05</td>
<td>0.98</td>
<td>1.04</td>
<td>0.91</td>
<td>1.07</td>
</tr>
<tr>
<td>bolt12</td>
<td>0.99</td>
<td>0.93</td>
<td>1.05</td>
<td>0.90</td>
<td>0.92</td>
<td>1.05</td>
</tr>
<tr>
<td>bolt13</td>
<td>0.93</td>
<td>1.10</td>
<td>1.05</td>
<td>0.96</td>
<td>0.99</td>
<td>1.08</td>
</tr>
<tr>
<td>bolt14</td>
<td>1.04</td>
<td>1.05</td>
<td>0.92</td>
<td>0.97</td>
<td>1.09</td>
<td>0.99</td>
</tr>
<tr>
<td>bolt15</td>
<td>1.01</td>
<td>0.95</td>
<td>0.90</td>
<td>1.04</td>
<td>1.06</td>
<td>1.04</td>
</tr>
<tr>
<td>bolt16</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>1.03</td>
<td>1.08</td>
<td>0.96</td>
</tr>
<tr>
<td>bolt17</td>
<td>1.08</td>
<td>0.97</td>
<td>0.93</td>
<td>0.94</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>bolt18</td>
<td>0.94</td>
<td>0.92</td>
<td>0.96</td>
<td>0.95</td>
<td>0.99</td>
<td>0.94</td>
</tr>
<tr>
<td>bolt19</td>
<td>1.08</td>
<td>1.02</td>
<td>1.05</td>
<td>0.99</td>
<td>0.95</td>
<td>0.97</td>
</tr>
<tr>
<td>bolt20</td>
<td>0.96</td>
<td>0.97</td>
<td>1.06</td>
<td>1.00</td>
<td>0.91</td>
<td>0.96</td>
</tr>
<tr>
<td>bolt21</td>
<td>1.09</td>
<td>1.07</td>
<td>1.02</td>
<td>0.98</td>
<td>0.95</td>
<td>1.04</td>
</tr>
<tr>
<td>bolt22</td>
<td>1.09</td>
<td>1.00</td>
<td>0.94</td>
<td>1.08</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>bolt23</td>
<td>0.97</td>
<td>1.04</td>
<td>1.06</td>
<td>1.08</td>
<td>1.02</td>
<td>0.92</td>
</tr>
<tr>
<td>bolt24</td>
<td>1.08</td>
<td>0.94</td>
<td>0.93</td>
<td>0.95</td>
<td>0.97</td>
<td>0.99</td>
</tr>
</tbody>
</table>

ポルト締付け時のフランジローテーション\(^{(79)}\) によるものであり、呼び径の大きな管フランジほど面圧値が高くなっている．しかしながら、局部的に高い面圧は確認されず，12本以上のポルトで締付ける管フランジについては，type5は有効な締付け手順であると考えられる．

9.4.4 締付け軸力のばらつきの影響

ポルトの締付け方法としてトルク法が最も広く使用されている\(^{(6)}\)．トルク法を用いる場合，接触面の摩擦係数によりある程度の軸力のばらつきは避けられない\(^{(101)}\)．本節では，締付け力のばらつきがある場合のポルト締付けシミュレーションを行い，締付け力にばらつきが管フランジ締結体の締付け特性におよぼす影響を評価する．ここで対象とするのは，class 300lb 20in フランジである．
図 9.14 case 1 の締付け軸力 F_t'

各ボルトの締付け軸力 F_t' が所定の軸力 F_t に対して ±10%ばらつく場合を想定し、表 9.3 の case 1 から case 6 の 6 種類のボルト締付け力 F_t' を設定する。各ボルトの締付け軸力 F_t' は一様乱数を用いて決定している。この場合、各 case の F_t' の平均は F_t となる。図 9.14 は、表 9.3 の case 1 の締付け軸力をグラフとして表したものである。

図 9.15 は、case 1 の締付け轴力 F_t' を用いて、type4 と type5 の締付け手順に従ってポルト締付けシミュレーションを行った際の各 pass 完了時のポルト軸力 F の変化を示している。縦軸は各 pass 完了時に残留しているボルトの軸力 F を、所定の締付け軸力 F_t で除して無次元化して示している。図 9.15 より、pass7 完了時にばらついているポルト軸力の最大差は、type4 の場合 0.24F_t、type5 の場合 0.21F_t であり、これは各ポルトの締付け力 F_t' の最大差 0.2F_t に近い値となっている。図 9.15 と図 9.10 の type4 と type5 の結果を比較すると、ある程度以上の締付け作業回数では、ポルト軸力のばらつきはトルク法で締付ける際の摩擦係数のばらつきに依存すると言える。

図 9.16(a) は、図 9.15 の各 pass 完了時にばらついている軸力の平均値 F_m の変化を、図 9.12 の全てのボルトを所定の値で締付ける軸力制御の場合の結果とともに示してい
図9.15 case 1の締付け軸力を用いたときの各pass完了時のボルト軸力の変化

また、図9.16(b)は表9.3のcase 1からcase 6のF'_tで締付けた場合のF_mの変化を示している。図9.16より、F_mの変化は締付け力につらつきが無い場合とほぼ同様の変化を示すことが分かる。このため、F_mを用いて締付け作業回数を決定する場合は、前節までのように全てのボルトを同じ軸力で締付けることができる理想的な場合に対して評価すればよいといえる。

図9.17(a)は、図9.15の各pass完了時にたらついている軸力の最大値から最小値を
差し引いた最大軸力差 ΔF の変化を、図9.12の全てのボルトを所定の値で締付ける場合の結果とともに示している。また、図9.17(b) は表9.3の case 1 から case 6 の F_t' で締付けた場合の ΔF の変化を示している。図9.17より case 1 から case 6 の F_t' で締付ける場合、締付け作業初期は軸力制御の場合とほぼ同様な値を示しているが、pass 数が増加するといずれも締付け力の最大差 0.2 に漸近していることがわかる。このことからも、管フランジ締結体のボルト締付けの際に生じる軸力のばらつきは、締付け作業開始時は弾性相互作用の影響が強いが、ある程度以上の締付け作業回数に達すると、トルク法で締付ける際の摩擦係数のばらつきに依存するということがいえる。また、
type 5 の手順を用いた方が，type 4 の場合よりも早く 0.2 に漸近する傾向にあることがわかる。

図 9.18 は，pass1 と pass7 完了時のガスケット座面外縁部の円周方向の面圧分布を示している．表 9.3 に示す case 1 から case 6 と軸力制御の結果を示している．ここでは，type4 の締付け手順を用いている．図 9.18 より，pass1 ではいずれもほぼ同様な面圧分布を示しており締付け軸力のばらつきによる影響が確認されないが，pass7 では締付け力のばらつきの影響が生じていることがわかる．
9.5 結言

管フランジ締結体の実用的なボルト締付け指針を確立する基礎研究として、石綿ジョイントシートガスケットを使用した管フランジ締結体に対して体系的なボルト締付けシミュレーションを行った結果、以下のような結論を得た。

1. 作業効率が極めて高いが、最初から所定の締付け力で一方向に締付ける手順が、12本以上のボルトで締付けられる比較的口径の大きな管フランジに有効であること示した。

2. ボルトの締付け順序は、各pass完了時のボルト軸力のばらつきに影響するが、平均軸力の変化にはほとんど影響しないことを示した。また、はじめから所定の軸力値で締付けを行うと、少ない回数の締付け作業で高い平均軸力を達成できることを示した。

3. 呼び径が大きくclassが高い管フランジほど、均一な軸力状態を得るために多くの締付け作業を必要とすることを示した。

4. ガスケット座面圧分布変化から、所定の軸力で一方向にくり返して締付けを行うてもガスケットの片締めが生じないことを示した。また、4本あるいは8本のボル
トで締付けられる管フランジでは，作業完了時の面圧分布が必ずしも一定にならないことを確認した．
5. トルク法による締付けを想定して，締付け軸力にばらつきがある場合のボルト締付けシミュレーションを行い，各pass完了時のボルト軸力の平均値は締付け力にばらつきが無い場合と同様の変化をすることが示された．
第10章

有限要素解析による管フランジ締結体のボルト締付け指針の検討

10.1 緒言

ジョイントシートガスケットなど、板状のシートから希望する寸法を切り出して使用するタイプのガスケットでは、管フランジの呼び径が変化しても、その締結体の特性を評価する場合は同じ応力-ひずみ関係を用いることができる。一方、うず巻形ガスケットはガスケットの寸法によって製造の条件が異なることがある。また、第7章で示したように内外輪の有無によりガスケットの挙動は変化する。このように、うず巻形ガスケットは同じ材質のものでも、呼び径の変化や内外輪の有無により、ガスケットの厚さ方向の剛性が変化する。このため、前章で被綿ジョイントシートガスケットを対象に行ったように、ボルト締付け作業回数などを管フランジの呼び径を変えて体系的に評価することは、うず巻形ガスケットの場合は困難である。

また前章では、被綿ジョイントシートガスケットを用いた管フランジ締結体を対象に、ボルトの締付け順序と締付け力の増加手順について考察を行った。その結果、作業効率が極めて高いが最初から所定の締付け力で一方向に締付ける手順が、12本以上のボルトで締付けられる比較的口径の大きな管フランジに有効であることを示した。8本以下のボルトで締付けられる管フランジに対して上記手順が有効でない理由は、管フランジの剛性が高く口開き変形が生じるためである。うず巻形ガスケットは、ジョイントシートガスケットより高圧用の剛性の高い管フランジに対しても使用されるため、12本以上のボルトで締付けられる管フランジに対して上記手順が適用できなくなる。
る可能性がある。
以上のような点を考慮すると、適用範囲の広い管フランジ締結体のボルトの締付け指針を作成するためには、ガスケットの材料特性が管フランジの締付け特性におよぼす影響を評価し、高圧用の管フランジにも適用することのできる締付け手順を検討する必要がある。
そこで本章では、ガスケットの応力-ひずみ関係のモデル化および厚さ方向の剛性が、管フランジ締結体の締付け特性に与える影響を検討する。また、ボルト締付け過程において口開き変形を生ずるような剛性の高い管フランジに対しても適用できるボルト締付け手順を検討する。この場合、特に締付けを開始する初期状態の影響を中心に検討を行う。最後に、ジョイントシートガスケットと厚さ変形ガスケットを用いた管フランジ締結体のボルト締付け指針を提案する。

10.2 ガスケットのモデル化の検討

第7章で提案したガスケットの応力-ひずみ関係の同定方法では、管フランジ締結体のボルト締付け特性を精度良く評価するために、ガスケットの非線形挙動を多項式または指数関数を用いて表した。しかしながら、多種多様なガスケットに対応する管フランジの締付け指針を作成するためには、より単純なガスケットのモデル化手法を行う必要があると考える。ここでは、永田ら(77)が提案しているガスケットのモデル化を採用し、管フランジのボルト締付けシミュレーションへの適用性を検討する。このモデル化は、ガスケットを線形ばねとし負荷曲線と除荷曲線で別々のヤング率を用いている。

本節では、第7章で用いた石綿ジョイントシートガスケット（7章中のGasket No.1）と内外輪付きうず巻形ガスケット（7章中のGasket No.2）を対象とする。

10.2.1 ボルト締付け解析に対するガスケットのモデル化の影響

第7章で同定したガスケットの応力-ひずみ関係を以下に示す。

石綿ジョイントシートガスケット（厚さ3mm）

負荷時：\[\sigma = 12.6 \{ \exp(19.6\varepsilon) - 1 \} \] (10.1)
図10.1 ガスケットの応力-ひずみ関係

(a) 石綿ジョイントシートガスケット

(b) うず巻形ガスケット
図10.2 各pass 完了時の平均ボルト軸力におよぼすガスケットのモデル化の影響

除荷・再負荷時：
\[\sigma = \alpha \exp(\beta \varepsilon) + \gamma \quad \text{(10.2)} \]

\[\alpha = \frac{\sigma_y}{\exp(\beta \varepsilon_y) - \exp(\beta \varepsilon_r)} \]

\[\beta = 431.0 \exp(-37.9 \varepsilon_y) + 57.6 \]

\[\gamma = -\alpha \exp(\beta \varepsilon_r) \]

\[\varepsilon_r = 0.47 \cdot \varepsilon_y \]

内外軸付きうず巻形状ガスケット（JIS B 2404 D–40K–50，厚さ4.5mm）

負荷時：
\[\sigma = 65.2 \cdot \varepsilon + 27.3 \times 10^2 \cdot \varepsilon^2 - 17.4 \times 10^3 \cdot \varepsilon^3 \\
+ 32.1 \times 10^4 \cdot \varepsilon^4 - 17.5 \times 10^5 \cdot \varepsilon^5 + 28.8 \times 10^5 \cdot \varepsilon^6 \quad \text{(10.3)} \]
除荷・再負荷時：\(\sigma = \alpha \exp(\beta \varepsilon) + \gamma \) \hspace{1cm} (10.4)

\[
\alpha = \frac{\sigma_y}{\exp(\beta \varepsilon_y) - \exp(\beta \varepsilon_r)}
\]

\[
\beta = 103.3 \cdot \exp(-9.9 \cdot \varepsilon_y) + 63.6
\]

\[
\gamma = -\alpha \exp(\beta \varepsilon_r)
\]

\[
\varepsilon_r = 1.25 \cdot \varepsilon_y^2 + 0.47 \cdot \varepsilon_y
\]

上記の式で表されるガスケットの応力-ひずみ曲線を図10.1に示す。

ガスケットの応力-ひずみ関係を、負荷側と除荷側で剛性の異なる線形ばねにモデル
化する場合、負荷時のヤング率 E_l と除荷時のヤング率 E_u を以下のように決定する。負荷時のヤング率 E_l は、(0, 0) と $(\varepsilon_y, \sigma_y)$ を通る直線の傾きとする。ここで、ε_y と σ_y はそれぞれ負荷曲線上のひずみと応力であり、σ_y を全ボルト締付け力をガスケット座面の面積で除した平均ガスケット座面圧とする。除荷曲線のヤング率 E_u は、除荷曲線上の $(\varepsilon_y, \sigma_y)$ における勾配とする。この場合、例えば図 10.1(a)に示す石綿ジョイントシートガスケットの応力・ひずみ曲線において、ガスケット座面の平均面圧力が45MPaの時、負荷時のヤング率は E_l=580MPa、除荷時のヤング率は E_u=3756MPaとなる。

管フランジ締結体のボルト締付けシミュレーションに対する、上記モデル化の影響を検討する。対象とするのは前章で用いた class 300lb 6in と 20in の管フランジとし、石綿ジョイントシートガスケットを用いる場合は図 9.3に示す有限要素モデルを使用している。所定のボルト締付け力 F_l は、石綿ジョイントシートガスケットとうず巻形ガスケットを用いる場合に対して、ガスケット座面の平均面圧力がそれぞれ 30MPa, 60MPa となるように設定している。この時、式 10.1－式 10.4を用いてガスケットのヤング率は以下のように決定される。

石綿ジョイントシートガスケット： E_l=483MPa, E_u=3074MPa

うず巻形ガスケット： E_l=450MPa, E_u=5537MPa

ボルトの締付けは、最初から所定の締付け力で時計回りに締付ける手順を採用している。

図 10.2は、管フランジ締結体のボルト締付けシミュレーションの結果得られた、各 pass 完了時に残留しているボルト軸力の平均値 F_m の変化を示している。図中 □ nonlinear □は式 10.1－式 10.4で示したガスケットの非線形挙動、□ linear □はガスケットのヤング率 E_l と E_u を用いた結果である。図 10.2より、ガスケットの非線形挙動を考慮した結果の方が若干値が高くなっているが、その差は比較的小さいことがわかる。このため、ボルト締付け過程における各 pass 完了時の平均軸力を評価する場合、ガスケットの挙動を線形とみなすモデル化の適用が可能であるといえる。

図 10.3は、図中に示す pass 完了時のガスケット座面外縁部の円周方向の接触面圧分布を示している。図 10.2に示したボルトの平均軸力に比べて、モデル化の差が比較的大きく現れていることがわかる。このため、ガスケット座面の接触面圧分布を精度良く評価するためには、ガスケットの非線形挙動を考慮する必要があると考える。また、全ての pass でガスケットの非線形挙動を考慮した方が面圧値が高くなっている。これは、ボルトの締付けによりフランジにローテーションが生じ、ガスケット外縁部にお
いてガスケット面圧が平均値を超えるが、この時ガスケットの非線形挙動を考慮するとその部分のガスケットの剛性がヤング率 E_l より高くなるためである。このため、図10.2ではガスケットの非線形挙動を考慮する場合の方がわずかに値が高くなっている。

10.2.2 負荷曲線と除荷曲線のヤング率の影響

前小節において、管フランジ締結体のボルト締付け過程における各 pass 完了時に残留しているボルト軸力の平均値を評価する場合は、ガスケットの応力-ひずみ関係を線形とするモデル化が適用できることを示した。図10.4はこのモデル化手法を採用した際、式10.1～式10.4を用いて算出されるガスケット負荷時のヤング率 E_l、除荷時のヤング率 E_u、それらの比 E_u/E_lがガスケットの応力レベル σ_y によってどのように変化するか示している。図からわかるように、負荷時・除荷時いずれのヤング率も、ガスケットの応力が20MPaを超えるあたりからほぼ直線的に増加している。図10.4(c)に示すヤング率の比 E_u/E_l が、石綿ジョイントシートガスケットの場合ガスケット応力が10MPaあたりからほぼ一定値を取るのでに対して、うず巻形ガスケットは単調に増加していることがわかる。

ガスケットのヤング率 E_l と E_u の値が、管フランジ締結体のボルト締付け過程の各 pass 完了時の平均ボルト軸力 F_m におよぼす影響を検討する。解析の対象とするのはclass 300lb 10inの管フランジで、M27のボルト16本で締付けを行う。所定の締付け力 F_i はガスケット座面の平均面圧が、石綿ジョイントシートガスケットとうず巻形ガスケットを用いる場合それぞれ30MPa, 60MPa となるように設定している。

はじめに、ガスケットの負荷時のヤング率 E_l の影響を検討するために、除荷時のヤング率 E_u を5.0GPa一定とし、E_l を250, 500, 750, 1000MPa と変化させて、管フランジ締結体のボルト締付けシミュレーションを行う。解析の結果を図10.5に示している。いずれのガスケットを用いた場合も、ガスケットの剛性が高いほどボルト軸力の平均値 F_m が高くなっていることがわかる。$E_l=1000MPa$ と250MPaにおける F_m/F_l の最大差は、石綿ジョイントシートガスケットの場合約15%，うず巻形ガスケットの場合は約20%と比較的大きくなっている。

つぎに、ガスケットの除荷時のヤング率 E_l の影響を検討する。E_l を500MPa一定とし、E_u を2.5, 5.0, 7.5GPa と変化させる。解析の結果を図10.6に示している。図から分かるように、各 pass 完了時の平均ボルト軸力 F_m におよぼす E_l の影響は非常に

158
(a) 負荷時のヤング率：E_l

(b) 除荷時のヤング率：E_u

(c) ヤング率の比：E_u/E_l

図10.4 ガスケットのヤング率
図10.5 各pass完了時の平均ボルト軸力およびほぼ負荷時のヤング率 E_l の影響（class 300lb 10in）

小さいことがわかる。これは、ボルトの締付け過程においてガスケットが除荷を生ずる部分が存在するが、局部的であり、その値も小さいためであると考えられる。

10.3 剛性の高い管フランジのボルト締付け手順の検討

ボルトの締付け過程において、口開き変形を生じるような剛性の高い管フランジのボルト締付け手順を検討する。このような管フランジの締付け過程においては、第8章の図8.7で示したように、締付け初期の口開き変形が元に戻らないという現象が生じている。このため、締付け作業開始時に口開き変形が生じないような締付け手順を
図 10.6 各 pass 完了時の平均ポルト軸力におよぼす除荷時のヤング率 E_u の影響（class 300lb 10in）

検討する必要があると考える。そこで本節では、締付け作業開始時の初期状態に着目し、締付け手順の検討を行う。

10.3.1 Install の影響

本研究で行ってきた管フランジ締結体のポルト締付けシミュレーションでは、「全てのボルトを挿入しボルト頭部座面は接触しているがボルト軸力は生していない」という状態を初期状態つまり Install 作業完了時として、この状態からボルト締付け作業を開始してきた。第9章の図9.1に示した ASME の締付け指針では、Install 作業として □ Hand tighten, then snug up to 10-20 ft-lb □ とする。これは、上記ボルト締付けシミュ
図10.7 有限要素モデル（class 1500lb 6in）

<table>
<thead>
<tr>
<th></th>
<th>Node</th>
<th>Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt & Nut</td>
<td>1980</td>
<td>1296</td>
</tr>
<tr>
<td>Flange</td>
<td>1728</td>
<td>1128</td>
</tr>
<tr>
<td>Gasket</td>
<td>-</td>
<td>120</td>
</tr>
</tbody>
</table>

図10.8 ボルト番号

図10.9 各pass完了時に各ボルトに残留している軸力の変化（type11）
図 10.10 pass 1, pass 3, pass 7 完了時におけるガスケット座面外縁部の円周方向の面圧分布

図 10.11 pass 1, pass 3, pass 7 完了時におけるガスケット座面外縁部の円周方向の面圧分布

レーショーンの初期状態とほぼ同様の状態であると考えられる。
実際の管フランジの組立作業では、フランジ間の平行度を取るため、またはその状態を保つために数本のボルトを前もって締付ける作業が行われる場合がある。このこ
図10.12 各pass完了時に各ボルトに残留している軸力の変化

とを考慮し、90度離れて位置する4本のボルトが等しい軸力で締付けられた状態を初期状態とする手順を検討する。解析の対象とするのは、JPI class 1500lb 6inのフランジである。この管フランジは、M36のボルト12本で締付けられる。ガスケットとしては、矩形ガスケットを対象とし、式10.3と式10.4で表される応力-ひずみ関係式を用いる。また、所定のボルト締付け力F_tは、ガスケット座面の平均面圧が60MPaとなるように$F_t=57.1$kNとしている。図10.7に使用した有限要素モデルを示している。

ここで、以下に示す3種類のInstall状態を設定する。ボルト番号は図10.8に示している。

type11：全てのボルトを挿入
type12 : bolt3，bolt6，bolt9，bolt12 を 0.5Ft で同時に締付ける

type13 : bolt3，bolt6，bolt9，bolt12 を Ft で同時に締付ける

上記各状態から，所定の締付け力 Ft で bolt 1 から時計回りに 7-pass の締付け作業を実施する。

図 10.9 は type11 の締付け手順を用いてボルト締付けシミュレーションを行った際の，各 pass 完了時に各ボルトに残留している軸力の変化を示している。pass 4 からボルトの軸力が所定の値 Ft を超えるボルトが現れ，pass 7 においては F/Ft = 1 を挟んで約 10%のばらつきがあり，さらに締付け作業の回数を重ねてもこのばらつきは消えずに残る。図 10.10 は図中に示す各 pass 完了時のガスケット座面外縁部の円周方向の面圧分布を示している。type 11 では口開き変形が生じ，面圧が円周方向に大きく変化していることがわかる。type 12，type 13 では面圧の円周方向変化は比較的小さくなってしまおり，特に type 13 では pass 1 においても面圧変化が小さいことがわかる。図 10.10 より，Install 時に 90 度離れて位置する 4 本のボルトを所定の軸力 Ft で前もって締付けておく作業は，口開き変形を防止するために有効であることがわかる。しかしながら，type 13 の締付け手順を用いてもガスケット座面圧の円周方向の変化は残っている。そこで，90 度離れて位置する 4 本のボルト bolt3，bolt6，bolt9，bolt12 を所定の軸力 Ft で一様に締付けた後，1 周だけ時計回りに 0.5Ft で締付け作業を行い，その後に Ft で締付ける手順 type 14 を提案する。図 10.11 は type 13 と type 14 の pass 1，pass 3，pass 7 完了時のガスケット座面外縁部の円周方向の面圧分布を示している。type 14 の方が特に pass 1 における円周方向の面圧変化量が小さくなってしまおり，提案する type 14 の手順の有効性が確認される。

つぎに，ASME の締付け指針と type 14 の比較を行う。図 10.12 は締付け手順として ASME の手順と type 14 を用いた際の，各 pass 完了時に各ボルトに残留している軸力の変化を示している。ASME の手順では，pass 1 が所定の軸力 Ft で対角状に締付ける作業，つまり図 9.1 の Round 3 に対応する。そのため，pass 1 の前に Round 1 と Round 2 が行われている。また，type 14 では pass 1 の前に bolt3，bolt6，bolt9，bolt12 を所定の軸力 Ft で一様に締付けた後，時計回りに 1 周 0.5Ft で締付ける作業を行っている。ASME の締付け手順を用いた場合，図 10.9 のように pass 7 において F/Ft = 1 を挟んでボルト軸力のばらつきが残っており，type 11 の手順ほど顕著ではないがフランジの口開き変形が生じていることがわかる。一方 type 14 の場合，pass 数が増加するにつれ
図 10.13 有限要素モデル（class 600lb 40in）

図 10.14 ボルト番号

てボルト軸力のばらつきは低下し，全てのボルトの F/F_i が下側から 1 に漸近しており，口開き変形を呈しない剛性の低いフランジの締付け時と同様の特性を示していることがわかる．このため，ここで提案している type 14 の手順は ASME の手順よりも精度が高いことが確認できる．強く主張したいのは，type 14 が対角状の締付け作業を全く行っていないということである．このため，ボルト締付け作業時の労力を低下させることができると考えられる．
図 10.15 pass 1, pass 3, pass 7 完了時におけるガスケット座面外縁部の円周方向の面圧分布（class 600lb 40in）

10.3.2 Install 時に締付けるボルト本数の影響

口径の大きな多数のボルトで締付けを行う管フランジの場合，Install 時に前もって何本のボルトを所定の軸力 F_t で締付ける必要があるのか検討する。図 10.13 に示す class 600lb 40in フランジを対象とする。この管フランジは，M56 のボルト 32 本で締付けを行う。図 10.14 にボルト番号を示している。所定の軸力 F_t はガスケット座面の平均面圧が 60MPa となるように，$F_t = 160.6kN$ としている。ここで，以下に示す 3 種類の Install 状態を設定する。

type21：全てのボルトを挿入

type22：bolt8，bolt16，bolt24，bolt32 を F_t で同時に締付ける

type23：bolt4，bolt8，bolt12，bolt16，bolt20，bolt24，bolt28，bolt32 を F_t で同時に締付ける

図 10.15 は pass 1，pass 3，pass 7 完了時におけるガスケット座面外縁部の円周方向の面圧分布を示している。pass 1 において面圧値の多少の違いはみられるものの，pass 3，pass 7 においてはいずれの手順もほぼ同様な変化をしており，また面圧の円周方向変化は小さいことがわかる。管フランジの口径が大きくなると，フランジの口開き変形は生じ難くなり，Install 時の初期状態にあまり影響を受けない。このため，32 本程
度のボルト本数であれば 90 度離れて位置する 4 本のボルトを所定の軸力 \(F \) で締付けでおけばよいと考えられる。

10.4 管フランジ締結体のボルト締付け指針

前節で検討した内容をふまえて、つぎに示す管フランジ締結体のボルト締付け指針を提案する。

締付け作業を実施する前に「締付け軸力」と「作業回数」を決定する。希望する締付け軸力の達成度（1 以下）を設定し、その逆数に所定の軸力（設計値）を掛けての値を締付け軸力とする。また、図 10.17 を参考に希望する達成度を得るための締付け作業回数を決定する。

Install 1 フランジ間の平行度を確認しながら、図 10.16 に示す 90 度離れて位置する 4 本のボルトの軸力が締付け軸力値になるよう均一に締付ける。

Install 2 締付け軸力の 50%で一方向に 1 周締付けを行う。

Assembly 締付け軸力で一方向に連続して締付けを行う。この時、前もって決定しておいた回数の締付け作業を行う。

168
(a) ジョイントシートガスケット

<table>
<thead>
<tr>
<th>class</th>
<th>NPS</th>
<th>150lb</th>
<th>300lb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10in</td>
<td>16in</td>
</tr>
<tr>
<td>Install 2</td>
<td>0.515</td>
<td>0.408</td>
<td>0.402</td>
</tr>
<tr>
<td>pass 1</td>
<td>0.822</td>
<td>0.679</td>
<td>0.683</td>
</tr>
<tr>
<td>pass 2</td>
<td>0.942</td>
<td>0.831</td>
<td>0.833</td>
</tr>
<tr>
<td>pass 3</td>
<td>0.980</td>
<td>0.911</td>
<td>0.909</td>
</tr>
<tr>
<td>pass 4</td>
<td>0.992</td>
<td>0.953</td>
<td>0.949</td>
</tr>
<tr>
<td>pass 5</td>
<td>0.997</td>
<td>0.975</td>
<td>0.971</td>
</tr>
<tr>
<td>pass 6</td>
<td>0.999</td>
<td>0.986</td>
<td>0.983</td>
</tr>
<tr>
<td>pass 7</td>
<td>1.000</td>
<td>0.992</td>
<td>0.990</td>
</tr>
</tbody>
</table>

(b) うず巻形ガスケット

<table>
<thead>
<tr>
<th>class</th>
<th>NPS</th>
<th>600lb</th>
<th>1500lb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6in</td>
<td>10in</td>
</tr>
<tr>
<td>Install 2</td>
<td>0.476</td>
<td>0.408</td>
<td>0.367</td>
</tr>
<tr>
<td>pass 1</td>
<td>0.739</td>
<td>0.679</td>
<td>0.627</td>
</tr>
<tr>
<td>pass 2</td>
<td>0.881</td>
<td>0.831</td>
<td>0.785</td>
</tr>
<tr>
<td>pass 3</td>
<td>0.945</td>
<td>0.911</td>
<td>0.874</td>
</tr>
<tr>
<td>pass 4</td>
<td>0.974</td>
<td>0.953</td>
<td>0.925</td>
</tr>
<tr>
<td>pass 5</td>
<td>0.986</td>
<td>0.975</td>
<td>0.955</td>
</tr>
<tr>
<td>pass 6</td>
<td>0.993</td>
<td>0.986</td>
<td>0.971</td>
</tr>
<tr>
<td>pass 7</td>
<td>0.996</td>
<td>0.992</td>
<td>0.981</td>
</tr>
</tbody>
</table>

図 10.17 各 pass 完了時の平均ポルト軸力

class 300lb 10in フランジを例として「締付け軸力」と「作業回数」の決定方法を説明する。ここで、うず巻形ガスケットを使用し、所定の軸力を 60kN, 希望する達成度 0.9 を設定する。この時、達成度の逆数は 1/0.9 ≈ 1.1 であるため、1.1 で 60kN=66kN が締付け軸力となる。また、図 10.17 よりうず巻形ガスケットを用いる class 300lb 10in フランジの場合、締付け作業完了時の平均軸力が 0.9 を達成するのは pass 6 であるの
で，締付け作業回数を6回とする。ここから実際の締付け作業に入る。class 300lb 10in
フランジは16本のボルトで締結を行うため，図10.16を参考にbolt 4, bolt 8, bolt 12,
bolt 16をそれぞれ66kNに締付ける（Install 1）．つぎに，33kNの締付け力でbolt 1
から時計回りに1周の締付け作業を行う（Install 2）．そして，66kNの締付け力でbolt
1から時計回りに6周の締付け作業を行う（Assembly）．

提案したボルト締付け指針の中で，締付け軸力を所定の軸力値よりも高くする理由
は，ボルトの軸力がある程度ばらついていても，ガスケット座面の円周方向の面圧分
布は比較的一緒となるため，締付け作業完了時のボルト軸力の平均値を所定のボルト
軸力にし，ガスケット座面の面圧状態を設計時に見積もった状態にするためである．し
かしながら，達成度を低く見積もりすぎると，締付け軸力F_bが高くなりすぎるため注
意が必要である．また図10.17は，ガスケットの負荷側のヤング率E_t=500MPa，除荷
側のヤング率E_u=5.0GPaとして，各管フランジに対してボルト締付けシミュレーション
を行った際の，各pass完了時における平均ボルト軸力の変化を示している．これら
のヤング率は，図10.4に示す平均的な値である．図10.17に示していない呼び径のフ
ランジに関しては，同じクラスのボルト本数が同じフランジのデータを参考にして差
し支えないと考える．

10.5 結言

管フランジ締結体のボルト締付け指針の提案を目的とし，ガスケットのモデル化と
ボルト締付け手順の検討を行った結果，以下のような結論を得た．

1. ガスケットの応力-ひずみ関係を簡単にモデル化する方法として，負荷時と除荷時
でヤング率の異なる線形ばねを採用した．このモデル化を用いて管フランジ締結
体のボルト締付け解析を行った結果，各締付け作業完了時の平均ボルト軸力の変
化を比較的精度良く評価できることを示した．
2. ガスケットの負荷時のヤング率は，各締付け作業完了時の平均ボルト軸力に影響
するが，除荷時のヤング率の影響はほとんどないことを示した．
3. ボルトの締付け作業を開始する前の初期状態つまりInstall作業の影響を検討し，
90度離れて位置する4本のボルトを所定の軸力で前もって締付けておくと，高い
剛性を有するフランジを締付けても口開き変形が生じないことを示した。
4. ジョイントシートガスケットとうず巻形ガスケットを用いた管フランジ締結体に
限定して、ボルト締付け指針を提案した。
第11章

効率的なポルト締付け手順の検討

11.1 緒言

管フランジ締結体において、全てのポルトの軸力が均一となるように締付けることは、最も重要な課題の一つである。このことを妨げている最大の原因は、多数のポルトを逐次締付ける際の各ポルト間の弾性相互作用である。前章まででみてきたように特に口径が大きい管フランジでは、均一なポルト軸力状態を得るために一連の締付け作業を多数回繰り返すことが必要となる。\(^{(83)}\)

そこで、各ポルトごとに別々の初期締付け軸力を設定し、1回の締付け作業つまり各ポルトを1回ずつ締付けるだけで均一なポルト軸力状態が得られる効率の良いポルト締付け手順が提案されている。Weberら\(^{(85)}\)は、三次元有限要素解析を用いて均一なポルト軸力を得るために必要な初期締付け軸力の算出を試みている。しかしながら、この方法はポルト締付け過程の荷重履歴による締結体の剛性の変化を考慮していないため、適用可能な締結体が限定される。またBibelらは、管フランジのポルト締付け実験より得られる弾性相互作用係数を用いることにより、各ポルトに必要な初期締付け軸力を算出している。\(^{(84)}\)この手法は非常に精度の良い方法であるが、締付け実験を必要とするため、多種多様な管フランジ締結体に対して、体系的に初期締付け軸力を算出することは困難である。

そこで本章では、均一なポルト軸力状態を得るために必要な初期締付け軸力を、数値解析を用いて算出する手法を提案する。初めに、第4章で提案した手法と同様な考えにもとづく、有限要素解析からポルトの締付け力を算出する手順を検討する。結果として、この手順は口径の大きな管フランジに対しては適用が困難であることが確認
された。そこで次に, 有限要素解析とBibelらが提案している弾性相互作用係数法(84)を併用する方法を提案する。この手法を用いて, まず最も効率の良い1回の締付け作業で均一なボルト軸力状態を得る場合を検討する。次に, 1回の締付け作業では初期締付け軸力がボルトの降伏軸力を越える場合があるので, 締付け軸力の最大値を制限して均一なボルト軸力状態を得る手順を検討する。対象とするのは, JPI class300 lb呼び径20 inの管フランジで, ガスケットはSS400材の金属平形ガスケットと石綿ジョイントシートガスケットの2種類を対象とする。

11.2 変位制御による初期締付け轴力の算出

本節では, 第8章で提案したボルト締付け過程をシミュレーションする有限要素解析の過程において, 均一なボルト軸力状態を達成するための初期締付け軸力を算出する手順を検討する。本手法は, 第4章で提案した手法と同様な考えに基づいている。

11.2.1 解析手順

ボルト軸力は, ボルト円筒部の対称面節点に軸方向強制変位を与えることにより生じさせるが, 全てのボルトに同じ強制変位を逐次与える解析を行い, その際各ボルトの締付け完了時に得られるボルト軸力を, 均一な軸力状態を達成するための初期ボルト軸力をとする。ここで, 解析手順を図11.1に示す3本のボルトで締結される管フランジを例に具体的に説明する。

予備計算
各ボルトの逐次締付けに対応した解析を開始する前に, 全てのボルトの対称面に一様な強制変位を与える, 各ボルトに等しく所定の軸力F_iを発生させるために必要な変位量u_iを求める。

bolt1の締付け
bolt1の対称面節点に強制変位増分を与え, bolt1の対称面変位がuになるまで増分計算を行う。このとき, 他のボルトの対称面変位は拘束している。

bolt2の締付け
bolt1の変位をuに保った状態で, bolt2の対称面に強制変位を与える。その場合, bolt3の軸方向変位は拘束されている。

173
Preliminary Calculation

Tighten bolt 1

Tighten bolt 2

Tighten bolt 3

図 11.1 締付け完了時に均一な軸力状態を達成するための初期締付け軸力を算出するための解析手順（変位制御）
表 11.1 締結完了時に均一な軸力状態を達成するための初期締付け軸力を算出する過程におけるボルト対称面変位

<table>
<thead>
<tr>
<th>Bolt-up Sequence k</th>
<th>Bolt Number j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>u</td>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
<td>u</td>
</tr>
</tbody>
</table>

bolt 3 の締付け
同様の作業を bolt 3 に対しても行う。各ボルトの対称面軸方向変位は，bolt 3 の締付けが完了した時点で全て u となる。ここで，各ボルトに与えるべき軸力の大きさは，それぞれのボルトを締付けた段階で逐次求められた F_{11}，F_{22}，F_{33} となる。
次節で対象とする 8 本のボルトで締付けられる管フランジの場合，ボルト締付け過程のボルト対称面の変位は表 11.1 のようになる。最終的な軸力を一定にするために各ボルトに逐次与えるべき軸力の大きさは，各ボルトの締付け段階において順次求められることになる。
以上のように，本手法はボルト対称面の変位をコントロールしているため，ここでは「変位制御法」と呼ぶことにする。

11.2.2 解析モデル
ここでは，内外輪付きのうず巻形ガスケットを用いた，JIS B 2238 呼び圧力 40K，呼び径 50 の大平面座を有する管フランジを解析対象とする。有限要素モデルは，第 8 章図 8.1(b) に示したものを利用しており，材料定数，境界条件，ボルト締付け順序なども第 8 章で用いた条件と同じである。

175
表11.2 均一なポルト軸力状態をとるための解析過程のポルト軸力変化

<table>
<thead>
<tr>
<th>Bolt Number j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.381</td>
<td>0.701</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>2.831</td>
<td>2.836</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>2.493</td>
<td>2.499</td>
<td>0.705</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>1.805</td>
<td>1.811</td>
<td>1.807</td>
<td>1.863</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>1.323</td>
<td>1.923</td>
<td>1.350</td>
<td>1.962</td>
<td>0.948</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>1.397</td>
<td>1.380</td>
<td>1.417</td>
<td>1.431</td>
<td>1.030</td>
<td>1.059</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>1.498</td>
<td>0.897</td>
<td>0.932</td>
<td>1.530</td>
<td>1.026</td>
<td>1.043</td>
<td>0.938</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>0.961</td>
<td>0.972</td>
<td>1.007</td>
<td>0.992</td>
<td>1.022</td>
<td>1.039</td>
<td>1.024</td>
<td>1.052</td>
</tr>
</tbody>
</table>

\((F_t = 10.1 \text{kN}) \)

図11.2 算出された初期締付け力を用いてポルト締付け実験を行ったときの締結完了時のポルト軸力のばらつき

11.2.3 ポルト軸力の変化

最終的に目標とするポルト軸力 \(F_t \) を10.1kNとした場合について，各ボルトの軸力変化の解析結果を表11.2に示す．表中の値は，各段階におけるポルト軸力を目標とするポルト軸力 \(F_t \) で除して無次元化している．また，表11.2は表11.1に対応している．
図11.3 初期締付け圧力を算出する解析過程のガスケット座面外縁部の面圧分布変化

締結完了時に該当する8行目の値は，8本のボルトを締付ける過程における荷重履歴により，完全に1とはなっていないが，そのばらつきは約5%以内と非常に小さく，変位制御に基づく本解析手法の有効性が確認できる．ここで，表の対角成分の値が，締結完了時に均一なボルト軸力状態を得るために各ボルトに与える初期締付け軸力となる．これらの値を用いて締付け実験を行った結果を図11.2に示している．なお，実験は2回行っている．横軸は締付け順序に対応したボルト番号で，縦軸は締付け完了時の軸力 F_i を所定の軸力 F_i で除して無次元化して示している．ばらつきは最大約10%となっており，第8章で示した全てのボルトを等しい初期軸力を締付けた場合に比べて，非常に小さな値となっている．

11.2.4 ガスケット座面圧分布の変化

図11.3は，各ボルトの締付け段階における，ガスケット座面外縁部の面圧分布の円周方向変化に対する解析結果を示している．図から，bolt 4を締付けた段階において，締結完了時にほぼ近い面圧値および分布パターンが得られていることがわかる．これは，表11.2の4行目に示すように bolt 4の締付け段階において，各ボルトに目標とす
図 11.4 有限要素モデル (JPI class300lb 20in)

図 11.5 ボルト締付け順序に対応するボルト番号

る軸力 F_t の約 2 倍の軸力が比較的一樣に生じているためと考えられる。締結完了時の
面圧分布は、ボルト軸力の多少のばらつきにより、円周方向にやや変化しているが、実
用的な観点からは一樣な分布になっているといえる。

11.3 変位制御法の大口径管フランジへの適用性の検討

前節で検討した変位制御に基づく手法を、第 9 章で対象とした JPI class 300lb 20in
フランジに適用する。ガスケットには、SS400 材を用いた金属平形ガスケットと、石
綿ジョイントシートガスケットを用いている。いずれのガスケットも厚さは 3mm であ
图 11.6 变位制御法によるボルト締付け解析完了時のボルト軸力状態

る。図 11.4 に使用した有限要素モデルを示している。図 11.5 は、締付け順序に対応したボルト番号を示している。またこれ以降、本章中では図 11.4 に示すモデルと図 11.5 に示す締付け順序を用いる。

所定の軸力 で 49.0kN とした場合について、締結完了時に各ボルトに残留している軸力の解析結果を図 11.6 に示す。横軸は図 11.5 に示すボルト番号、縦軸は解析完了時のボルト軸力 を所定の軸力 で除して無次元化して示している。金属平形ガスケット、ジョイントシートガスケットのいずれについても、前節で示した 8 本締め的小口径管フランジの場合と異なり（表 11.2 の 8 行目の値）、ボルト軸力は大きくばらついている。その理由としては、ボルトの締付け過程における荷重履歴、すなわち接触状態の変化と石綿ジョイントシートガスケットの材料非線形特性により、各ボルト付近の締結体の剛性が変化するためであると考えられる。前節で検討した変位制御に基づく手法では、上記の剛性変化の影響を考慮していなかったために、十分な精度が得られていないと考えられる。そこで次節では、有限要素解析と弾性相互作用係数法を組み合わせることにより、より汎用性の高い解析手法を提案する。
Initial State

Bolt Preload = \[f_2^0 \quad f_1^0 \quad f_3^0 \]

Tighten bolt 1

\[f_{21} \quad f_{11} = f_1^0 + \Delta f_1 \quad f_{31} \]

Tighten bolt 2

\[f_{22} = f_{21} + \Delta f_2 \quad f_{12} \quad f_{32} \]

Tighten bolt 3

\[f_{2f} = f_{23} \quad f_{1f} = f_{13} \quad f_{3f} = f_{33} = f_{32} + \Delta f_3 \]

図 11.7 3 本のボルトで締結される管フランジ締結体のボルト締付け過程
11.4 弾性相互作用係数法

弾性相互作用係数法は，各ポルトの初期締付け軸力の増加量とその締結完了時に残
留している軸力の間に線形関係があると仮定し，この関係から決定された相互作用係数
を利用することにより，少ない回数の締付け作業で一様なポルト軸力状態を得るた
めに必要な初期締付け軸力の算出を試みる手法である(2, 83, 84)．この手法によると，初
期締付け軸力の増加量と締付け作業完了時のポルト軸力の関係は次式で与えられる．

\[
\{ F_0 \} + [A] \{ \Delta F \} = \{ F_f \} \tag{11.1}
\]

ここで \(n \) 本のポルトを使用する場合，

\[
[A] = \text{弾性相互作用係数マトリックス} (n \times n)
\]

\[
\{ \Delta F \} = \text{初期締付け軸力の増加量ベクトル} (n \times 1)
\]

\[
\{ F_f \} = \text{締付け完了時の軸力ベクトル} (n \times 1)
\]

\[
\{ F_0 \} = \text{前 pass 完了時の軸力ベクトル} (n \times 1)
\]

となる「pass」は１回の締付け作業を意味し，以後「pass 1」「pass 2」はそれぞれ１回
目，2 回目の締付け作業。「1-pass」「2-pass」はそれぞれ１回，2 回の締付け作業を表す．

例として，図 11.7 に示すような 3 本のポルトで締結される管フランジ締結体の締付
け過程を考える．この場合，式 (11.1) 中の各ベクトルは以下のようになる．

\[
\{ F_0 \} = \begin{bmatrix} f_1^0 \\ f_2^0 \\ f_3^0 \end{bmatrix}, \quad \{ \Delta F \} = \begin{bmatrix} \Delta f_1 \\ \Delta f_2 \\ \Delta f_3 \end{bmatrix}, \quad \{ F_f \} = \begin{bmatrix} f_1^f \\ f_2^f \\ f_3^f \end{bmatrix} \tag{11.2}
\]

ここで，\(f_1^0, \Delta f_1, f_1^f \) は，それぞれポルト \(i \) における前 pass 完了時の軸力，初期締付
け軸力の増加量，締結完了時に残留している軸力を示している．図 11.7 中の \(f_{ij} \) はポ
ルト \(j \) を締付けた時，ポルト \(i \) に残留している軸力である．また，次式で表される初
期締付け軸力 \(\{ F_i \} \) は図 11.7 に示したように，各ポルトを締付けた段階でのそのポル
トの軸力の大きさである．

\[
\{ F_i \}^T = \{ f_{11} \; f_{22} \; f_{33} \}^T \tag{11.3}
\]

ここで，弾性相互作用係数マトリックス \([A]\) の各成分 \(a_{ij} \) を次のよう定义する．

\[
a_{ij} = \frac{f_{ij} - f_{i(j-1)}}{\Delta f_j} \tag{11.4}
\]
a_{ij} はポルト j を締付けた時、その軸力の増加量 Δf_j に対するポルト i の軸力の変化量の比を意味する。$[A]$ の各成分については、ポルト j の軸力が Δf_j 増加するように締付けると、対応する列成分が求められる。すなわち、図 11.7 に示した例ではポルトを 1 本締付ける毎に 3 つずつ成分が求められることになる。そこで、まずある初期締付け軸力の増加量 $\{\Delta F\}$ に対して $[A]$ を求める。次に式 (11.1) の $\{F \}$ の代わりに目標とする軸力ベクトル $\{F_i\}$ を代入し、求めた $[A]$ の値を用いると、一様な軸力状態 $\{F_i\}$ を得るために必要な各ポルトの初期締付け軸力の増加量 $\{\Delta F\}$ が次式から計算できる。

\[
\{\Delta F\} = [A]^{-1} (\{F_i\} - \{F_0\})
\]
(11.5)

ここで求めた $\{\Delta F\}$ は最初に与えた値と異なる。そこで式 (11.5) で求めた $\{\Delta F\}$ を用いて再びポルトの締付け過程を解析することにより $[A]$ の成分を修正し、締結完了時の軸力状態、すなわち図 11.7 の最終段階における各ポルトの軸力が $\{F_i\}$ に収束するまで繰り返し計算を実施する。

Bibel らは、2 回までの締付け作業により均一なポルト軸力状態を得る手順を検討している (80, 83, 84)。しかしながら、式 (11.1) は前pass 完了時の軸力状態 $\{F_0\}$ を基準とされているので、それまでの荷重履歴を考慮する必要がない。したがって、任意の回数での締付け作業に適用可能である。次章では任意回数の締付け作業による初期締付け軸力の具体的な算出手順を説明する。

11.5 初期締付け軸力の算出手順

有限要素解析と弹性相互作用係数法を併用し、m 回の締付け作業により均一なポルト軸力状態を得る場合について、初期締付け軸力の算出手順を説明する。

(1) 図 11.7 に示したように、各ポルトを逐次締付けていく過程を有限要素法により解析する。ここで、pass $(m-1)$ 終了時の軸力を pass m の初期状態 $\{F_0\}$ とする。pass m において各ポルトに与える初期締付け軸力 $\{F_i\}$ はポルト毎に変えることが可能であるが、ここでは $\{F_i\} = \{F_i\}$ とし、全てのポルトを目標とする軸力値 F_i で締付ける場合を考える。

(2) ポルト締付けシミュレーションの過程で式 (11.4) を用いて弹性相互作用係数マトリックス $[A]$ の各成分を算出する。
図 11.8 繰り返し計算の各 step における初期軸力と締付け完了時の軸力（石綿ジョイントシートガスケット：$F_t = 49.0\,\text{kN}$）

(3) 上で求めた [A] と式 (11.5) より初期締付け軸力の増加量 $\{\Delta F\}$ を求める．

(4) (3) で求めた $\{\Delta F\}$ を用いて，再びボルト締付け過程の有限要素解析を行う．ここで，$\{F_0\}$ は初期締付け軸力算出過程に一定である．

(5) (4) の結果，締付け完了時の各ボルト軸力と目標軸力 F_t との差が 5%以内ならば計算を終了する．そこで得られた $\{F_i\}$ が pass m において全てのボルト軸力を F_t とすることに各ボルトに与える軸力の大きさを表すことになる．もし，目標軸力 F_t といずれかのボルト軸力の差が 5%より大きい場合は，(2) から (5) を繰り返す．

ここでは m 回の締付け作業に対する手順を説明したが，次章で検討する 1 回の締付け作業では pass 数は 1 となり $\{F_0\}$ の成分は全て零である．

11.6 1 回の締付け作業で均一なボルト軸力状態を得る場合

11.6.1 解析結果と妥当性の検討

図 11.8 は，前章で述べた繰り返し計算の過程において，初期締付け軸力 F_i と締結完了時の軸力 F_f の関係が，3 回の繰り返し計算の過程でどのように変化するかを示している．ここでは，目標とする軸力 F_t を 49.0kN とし，石綿ジョイントシートガスケット

183
表 11.3 均一な軸力状態を達成することを目的として算出された初期締付け

<table>
<thead>
<tr>
<th>金属平形ガスケット</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bolt1</td>
<td>2.259</td>
<td>bolt7</td>
<td>1.783</td>
<td>bolt13</td>
<td>1.253</td>
<td>bolt19</td>
</tr>
<tr>
<td>bolt2</td>
<td>2.207</td>
<td>bolt8</td>
<td>1.754</td>
<td>bolt14</td>
<td>1.252</td>
<td>bolt20</td>
</tr>
<tr>
<td>bolt3</td>
<td>2.153</td>
<td>bolt9</td>
<td>1.342</td>
<td>bolt15</td>
<td>1.245</td>
<td>bolt21</td>
</tr>
<tr>
<td>bolt4</td>
<td>2.132</td>
<td>bolt10</td>
<td>1.341</td>
<td>bolt16</td>
<td>1.243</td>
<td>bolt22</td>
</tr>
<tr>
<td>bolt5</td>
<td>1.818</td>
<td>bolt11</td>
<td>1.344</td>
<td>bolt17</td>
<td>1.030</td>
<td>bolt23</td>
</tr>
<tr>
<td>bolt6</td>
<td>1.809</td>
<td>bolt12</td>
<td>1.319</td>
<td>bolt18</td>
<td>1.029</td>
<td>bolt24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>石綿ジョイントシートガスケット</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bolt1</td>
<td>2.793</td>
<td>bolt7</td>
<td>2.296</td>
<td>bolt13</td>
<td>1.376</td>
<td>bolt19</td>
</tr>
<tr>
<td>bolt2</td>
<td>2.752</td>
<td>bolt8</td>
<td>2.294</td>
<td>bolt14</td>
<td>1.375</td>
<td>bolt20</td>
</tr>
<tr>
<td>bolt3</td>
<td>2.948</td>
<td>bolt9</td>
<td>1.434</td>
<td>bolt15</td>
<td>1.389</td>
<td>bolt21</td>
</tr>
<tr>
<td>bolt4</td>
<td>2.944</td>
<td>bolt10</td>
<td>1.434</td>
<td>bolt16</td>
<td>1.389</td>
<td>bolt22</td>
</tr>
<tr>
<td>bolt5</td>
<td>2.152</td>
<td>bolt11</td>
<td>1.452</td>
<td>bolt17</td>
<td>1.002</td>
<td>bolt23</td>
</tr>
<tr>
<td>bolt6</td>
<td>2.145</td>
<td>bolt12</td>
<td>1.452</td>
<td>bolt18</td>
<td>1.002</td>
<td>bolt24</td>
</tr>
</tbody>
</table>

トを用いた場合の結果を示している。step 1 での初期値は全て 1 であり、step 3 の最
終値とほぼ重なっている。ここでは 3 回の繰り返し計算で前章で示した収束条件を満
足している。したがって、図 11.8 中の白抜きの四角印で示した step3(initial) の値が、
均一な軸力状態を得るために必要な各ボルトの初期締付け軸力となる。表 11.3 に、2
種類のガスケットに対して算出した各ボルトの初期締付け軸力 F_i を示している。表中
の値は、図 11.8 と同様に F_i で除して無次元値としている。初期締付け軸力の最大値
$F_{i,max}$ は、金属平形ガスケットと石綿ジョイントシートガスケットを用いた場合に対し
て、それぞれ 2.259F_i、2.948F_i となっている。

表 11.3 に示した値を用いて締付け実験を行う。図 11.9 は、その結果得られた各ポル
トの締結完了時の軸力を示している。図中に、各ガスケットに対して実施した 2 回の
実験結果を示している。ばらつきの最大値は 15%程度となっており、図 9.6 に示した全
てのボルトを同じ軸力値で締付けた場合と比較すると、ばらつきは非常に小さくなっ
ている。したがって、ここで提案する初期締付け軸力の算出手法は妥当であると考え
られる。
11.6.2 ガスケット座面圧分布の変化

1回の締付け作業により均一なボルト軸力状態を得る場合、表11.3に示すように所定の軸力F_tよりも高い値で各ボルトを締付ける必要がある。この場合、片締めによるガスケットの破損が懸念される。図11.9は、石綿ジョイントシートガスケットを対象として、表11.3に示した初期締付け軸力を用いてボルトを締付ける場合の解析を実施し、その結果得られた各ボルト締付け完了時におけるガスケット座面外縁部の接触面圧の円周方向分布を示したものである。横軸は、bolt1の中心を基準として時計回り
図11.10 ガスケット座面外縁部の接触面圧の円周方向分布（石綿ジョイントシートガスケット：$F_t=49.0\text{kN}$）

にはかった角度である。この図より、ボルトを逐次締付けていく過程において、締結完了時よりも極端に高い面圧が発生することなく、ガスケットの片締めやそれによる破損を生じる可能性は低いことがわかる。また締結完了時、面圧は円周方向にほぼ一様な分布となっており、シール性能の観点から望ましい結果となっている。

11.7 締付け軸力の最大値を制限して均一なボルト軸力状態を得る場合

前章で検討した1回の締付け作業で均一なボルト軸力を得ようとする場合、初期締付け軸力の最大値は目標軸力F_tの2〜3倍程度となった。この初期締付け軸力がボルトの降伏軸力を超える場合、前章で示した締付け手順を適用することは困難である。本節では、初期締付け軸力の最大値がある値、例えばボルトの降伏軸力を超えないように、2回以上の締付け作業で均一なボルト軸力状態を得る締付け手順を検討する。

11.7.1 解析手順

Bibelらは、2回の締付け作業で均一な軸力状態を得る手法を提案している(80, 83)。ここでは、その手法を任意の回数の締付け作業に応用する。すなわち本手法は、目標とする軸力を任意回数のpassによる締付けで達成する。まず、所定の軸力F_tまでを任意
表 11.4 2 回の締付け作業で均一な軸力状態を達成する際の pass 2 における算出されたボルト締付け軸力：F_i/F_t ($F_t=49.0\text{kN}$)

金屬平形ガスケット ($F_0/F_t=0.50$)

<table>
<thead>
<tr>
<th>ボルト</th>
<th>1.875</th>
<th>1.867</th>
<th>1.865</th>
<th>1.840</th>
<th>1.805</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボルト1</td>
<td>2.034</td>
<td>2.033</td>
<td>2.026</td>
<td>2.024</td>
<td>1.900</td>
</tr>
<tr>
<td>ボルト2</td>
<td>2.033</td>
<td>2.033</td>
<td>2.026</td>
<td>2.024</td>
<td>1.900</td>
</tr>
<tr>
<td>ボルト3</td>
<td>2.026</td>
<td>2.026</td>
<td>2.019</td>
<td>2.018</td>
<td>1.895</td>
</tr>
<tr>
<td>ボルト4</td>
<td>2.024</td>
<td>2.024</td>
<td>2.018</td>
<td>2.018</td>
<td>1.895</td>
</tr>
<tr>
<td>ボルト5</td>
<td>1.903</td>
<td>1.903</td>
<td>1.895</td>
<td>1.895</td>
<td>1.880</td>
</tr>
<tr>
<td>ボルト6</td>
<td>1.900</td>
<td>1.900</td>
<td>1.895</td>
<td>1.895</td>
<td>1.880</td>
</tr>
</tbody>
</table>

金屬平形ガスケット ($F_0/F_t=0.75$)

<table>
<thead>
<tr>
<th>ボルト</th>
<th>1.875</th>
<th>1.867</th>
<th>1.865</th>
<th>1.840</th>
<th>1.805</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボルト1</td>
<td>2.459</td>
<td>2.453</td>
<td>2.530</td>
<td>2.507</td>
<td>2.122</td>
</tr>
<tr>
<td>ボルト2</td>
<td>2.453</td>
<td>2.453</td>
<td>2.530</td>
<td>2.507</td>
<td>2.122</td>
</tr>
<tr>
<td>ボルト3</td>
<td>2.530</td>
<td>2.530</td>
<td>2.530</td>
<td>2.530</td>
<td>2.530</td>
</tr>
<tr>
<td>ボルト4</td>
<td>2.507</td>
<td>2.507</td>
<td>2.507</td>
<td>2.507</td>
<td>2.507</td>
</tr>
<tr>
<td>ボルト5</td>
<td>2.122</td>
<td>2.122</td>
<td>2.122</td>
<td>2.122</td>
<td>2.122</td>
</tr>
<tr>
<td>ボルト6</td>
<td>2.104</td>
<td>2.104</td>
<td>2.104</td>
<td>2.104</td>
<td>2.104</td>
</tr>
</tbody>
</table>

石綿ジョイントシートガスケット ($F_0/F_t=0.50$)

<table>
<thead>
<tr>
<th>ボルト</th>
<th>1.875</th>
<th>1.867</th>
<th>1.865</th>
<th>1.840</th>
<th>1.805</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボルト1</td>
<td>1.855</td>
<td>1.855</td>
<td>1.863</td>
<td>1.863</td>
<td>1.871</td>
</tr>
<tr>
<td>ボルト2</td>
<td>1.855</td>
<td>1.855</td>
<td>1.863</td>
<td>1.863</td>
<td>1.871</td>
</tr>
<tr>
<td>ボルト3</td>
<td>1.862</td>
<td>1.862</td>
<td>1.862</td>
<td>1.862</td>
<td>1.862</td>
</tr>
<tr>
<td>ボルト4</td>
<td>1.863</td>
<td>1.863</td>
<td>1.863</td>
<td>1.863</td>
<td>1.863</td>
</tr>
<tr>
<td>ボルト5</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
</tr>
<tr>
<td>ボルト6</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
</tr>
</tbody>
</table>

石綿ジョイントシートガスケット ($F_0/F_t=0.75$)

<table>
<thead>
<tr>
<th>ボルト</th>
<th>1.875</th>
<th>1.867</th>
<th>1.865</th>
<th>1.840</th>
<th>1.805</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボルト1</td>
<td>1.855</td>
<td>1.855</td>
<td>1.863</td>
<td>1.863</td>
<td>1.871</td>
</tr>
<tr>
<td>ボルト2</td>
<td>1.855</td>
<td>1.855</td>
<td>1.863</td>
<td>1.863</td>
<td>1.871</td>
</tr>
<tr>
<td>ボルト3</td>
<td>1.862</td>
<td>1.862</td>
<td>1.862</td>
<td>1.862</td>
<td>1.862</td>
</tr>
<tr>
<td>ボルト4</td>
<td>1.863</td>
<td>1.863</td>
<td>1.863</td>
<td>1.863</td>
<td>1.863</td>
</tr>
<tr>
<td>ボルト5</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
</tr>
<tr>
<td>ボルト6</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
<td>1.871</td>
</tr>
</tbody>
</table>

の pass に分割し、各 pass における所定の軸力値を F^1_t, F^2_t, ..., F^k_t, ..., F_t とする。ここで pass k において、初期状態 F^0_t を前 pass における目標軸力値 F^{k-1}_t とし、この

187
初期状態 $F_0^k = F_0^{k-1}$ から均一な目標軸力値 F_i^k を得るための初期締付け軸力 F_i を，5章で示した手法に基づき算出する．この作業を各 passごとに繰り返し，各 passにおける均一な所定の軸力を得るための初期締付け軸力を決定する．ここで，初期締付け軸力の最大値が，例えばボルトの降伏軸力値を超えないように pass数と各 passにおける目標軸力値を決定する．

11.7.2 2回の締付け作業で均一なボルト軸力状態を得る場合

ここでは，2回の締付け作業で締付けを完了する場合を扱う．目標軸力 F_i を 49.0kN とし，F_i に対する pass 2 の初期状態 F_0 の比 F_0/F_i を 0.5，0.75 と変化させる．表 11.4 は，F_0/F_i を 0.5，0.75 とした場合の pass 2 における初期締付け軸力の計算結果を示している．F_0/F_i=0.5，0.75 における初期締付け軸力の最大値 F_i^{\max} は，いずれのガスケットについても表 11.3 に示した 1 回の締付け作業の場合のそれぞれ約 90%，約 70% となっている．すなわち F_0/F_i=0.5 の場合，あらかじめ全てのボルトを 0.5F_i で均一に締付けているにもかかわらず，前章の表 11.3 で示した 1 回の締付け作業の場合と近い值になっている．

以上の点から，本研究で対象としている管フランジ締結体の場合，2 回の締付け作業では，初期締付け軸力の最大値を大幅に下げるとは困難であるといえる．

11.7.3 任意の回数の締付け作業で均一なボルト軸力状態を得る場合

目標軸力 F_i を 98.1kN とし，各 passにおける初期締付け軸力の最大値が 1.5F_i を超えないという条件の下で，各 passにおける初期締付け軸力の算出を試みる．表 11.5 は，各 passにおける初期締付け軸力の最大値 F_i^{\max} の計算結果をそのボルト番号とともに示したものである．F_i^{\max} の最大値が 1.5F_i を超えないようにするためには，金属平形ガスケットおよび石綿ジョイントシートガスケットに対して，それぞれ最低 3 回および 4 回の passが必要であるという結果が得られた．

次に，図 11.5 に示した順序に従って全てのボルトを目標とする軸力値 $F_i=98.1kN$ で締付け，その作業を複数 pass繰り返した場合を解析した．この締付け手順は，実際の現場で広く用いられている方法の一つである．表 11.6 は，その結果得られた各 pass 完了時におけるボルト軸力のばらつきの最大値を示したものである．金属平形ガスケットの pass 3 と石綿ジョイントシートガスケットの pass 4 におけるばらつきは，それぞれ
表11.5 算出された各passにおける初期締付け軸力の最大値 F_{i}^{max} ($F_i=98.1\text{kN}$)

<table>
<thead>
<tr>
<th></th>
<th>pass 1</th>
<th>pass 2</th>
<th>pass 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_0</td>
<td>0.0</td>
<td>49.0</td>
<td>F_i</td>
</tr>
<tr>
<td>F_{i}^{max}</td>
<td>1.130 F_i</td>
<td>1.438 F_i</td>
<td>$F_i=98.1\text{kN}$</td>
</tr>
<tr>
<td>bolt1</td>
<td></td>
<td></td>
<td>bolt1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>pass 1</th>
<th>pass 2</th>
<th>pass 3</th>
<th>pass 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_0</td>
<td>0.0</td>
<td>49.0</td>
<td>68.6</td>
<td>83.4</td>
</tr>
<tr>
<td>F_{i}^{max}</td>
<td>1.474 F_i</td>
<td>1.342 F_i</td>
<td>1.312 F_i</td>
<td>1.466 F_i</td>
</tr>
<tr>
<td>bolt3</td>
<td></td>
<td></td>
<td>bolt3</td>
<td>bolt6</td>
</tr>
<tr>
<td>bolt3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表11.6 全てのボルトを98.1kNで逐次締付けた時の各pass完了時のボルト軸力のばらつき

<table>
<thead>
<tr>
<th></th>
<th>pass 1</th>
<th>pass 2</th>
<th>pass 3</th>
<th>pass 4</th>
<th>pass 5</th>
<th>pass 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>金属平形ガスケット</td>
<td>91.4</td>
<td>40.3</td>
<td>18.7</td>
<td>8.8</td>
<td>4.1</td>
<td>1.9</td>
</tr>
<tr>
<td>石綿ジョイントシートガスケット</td>
<td>97.9</td>
<td>61.2</td>
<td>34.6</td>
<td>19.5</td>
<td>11.0</td>
<td>6.3</td>
</tr>
</tbody>
</table>

それ18.7%と19.5%となっている．本節で検討している手順は，表11.5に示したように同じpass数で一様な軸力状態を得ている．
表11.7 pass 2において均一な軸力状態を達成するためのボルト締付け軸力:

\[F_i / F_t (F_t = 98.1kN) \]

<table>
<thead>
<tr>
<th>金属平形ガスケット</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bolt1</td>
<td>1.345</td>
<td>bolt7</td>
<td>1.258</td>
<td>bolt13</td>
<td>1.087</td>
<td>bolt19</td>
</tr>
<tr>
<td>bolt2</td>
<td>1.333</td>
<td>bolt8</td>
<td>1.259</td>
<td>bolt14</td>
<td>1.084</td>
<td>bolt20</td>
</tr>
<tr>
<td>bolt3</td>
<td>1.318</td>
<td>bolt9</td>
<td>1.127</td>
<td>bolt15</td>
<td>1.081</td>
<td>bolt21</td>
</tr>
<tr>
<td>bolt4</td>
<td>1.312</td>
<td>bolt10</td>
<td>1.119</td>
<td>bolt16</td>
<td>1.083</td>
<td>bolt22</td>
</tr>
<tr>
<td>bolt5</td>
<td>1.287</td>
<td>bolt11</td>
<td>1.106</td>
<td>bolt17</td>
<td>1.005</td>
<td>bolt23</td>
</tr>
<tr>
<td>bolt6</td>
<td>1.276</td>
<td>bolt12</td>
<td>1.104</td>
<td>bolt18</td>
<td>1.003</td>
<td>bolt24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>石絞ジョイントシートガスケット</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bolt1</td>
<td>1.460</td>
<td>bolt7</td>
<td>1.466</td>
<td>bolt13</td>
<td>1.123</td>
<td>bolt19</td>
</tr>
<tr>
<td>bolt2</td>
<td>1.452</td>
<td>bolt8</td>
<td>1.468</td>
<td>bolt14</td>
<td>1.121</td>
<td>bolt20</td>
</tr>
<tr>
<td>bolt3</td>
<td>1.491</td>
<td>bolt9</td>
<td>1.135</td>
<td>bolt15</td>
<td>1.126</td>
<td>bolt21</td>
</tr>
<tr>
<td>bolt4</td>
<td>1.488</td>
<td>bolt10</td>
<td>1.133</td>
<td>bolt16</td>
<td>1.127</td>
<td>bolt22</td>
</tr>
<tr>
<td>bolt5</td>
<td>1.428</td>
<td>bolt11</td>
<td>1.152</td>
<td>bolt17</td>
<td>1.007</td>
<td>bolt23</td>
</tr>
<tr>
<td>bolt6</td>
<td>1.422</td>
<td>bolt12</td>
<td>1.151</td>
<td>bolt18</td>
<td>1.007</td>
<td>bolt24</td>
</tr>
</tbody>
</table>

11.8 効率の良い締付け手順の提案

締付け軸力の最大値を制限する場合、前章で提案した方法より少ない回数で均一な軸力状態を達成することが望まれる。具体的には2-passで締付けを完了させることを目標とする。まず、pass 1において全ボルトを制限された最大の等しい締付け軸力を逐次締付け、図9.6に示したようにボルト軸力がばらついた状態をpass 2の初期状態とする方法を提案する。この方法は、pass 2の初期状態においてボルトに残留している軸力の平均値を高くすることの効果に着目したものである。ここでは、7.3節と同様目標軸力 \(F_i \) を98.1kNと仮定し、初期締付け軸力の最大値が \(1.5F_i \) を超えないようにpass 2の初期締付け軸力の算出を試みる。まず、pass 1において全てのボルトを制限値である \(1.5F_i \) で逐次締付ける。次に、この状態を初期状態とし、5章に示す手順を適用することにより、pass 2における各ボルトの初期締付け軸力を算出する。2種類のガスケットに対して算出したpass 2における初期締付け軸力を、表11.7に示している。ここで、金属平形ガスケットを用いる場合、pass 1における各ボルトの初期締付け軸
力を1.5F_tとすると、pass 2 の初期締付け軸力を用いてポルトの締付け実験を行ったときの各 pass 完了時のポルト軸力のばらつき（$F_t=98.1$kN）

表11.7 より、pass 2 における初期締付け軸力の最大値は、所定の軸力 F_t の1.5倍を超えておらず、いずれも2 回の締付け作業で均一なポルト軸力状態を得ることができるとある結果が得られた。図11.11 は、これらの値を用いて締付け実験を行った場合の各 pass における締付け完了時のポルト軸力を解析結果と比較したものである。pass 2 完了時のばらつきに対する実験結果は、いずれのガスクettenに対しても最大約10%と
比較的小さくなっている．したがって，ここで提案した手順は，pass 2 のみ各ボルトに与える初期締付け軸力が異なる点と相まって，前節で述べた方法より効率的かつ実用的であると言える．

11.9 結言

管フランジ締結体の効率的なボルト締付け手順を検討した結果，以下に示すような結論を得た．

1. ボルト締付け過程を再現することのできる有限要素解析手法を用いた変位制御による初期締付け軸力の算出を検討し，小径フランジへの適用の有効性を確認した．しかしながら，口径の比較的大きなフランジに対しては適用が困難であることを示した．

2. 有限要素解析と弾性相互作用係数法を併用することにより，ボルトの締付け作業を任意回数繰り返す場合について，締付け作業完了時に均一な軸力状態を得ることができる初期締付け軸力の大きさを算出する手法を提案した．

3. 1 回のボルト締付け作業で最終的なボルト軸力を均一にする場合を検討し，算出した初期締付け軸力を用いた締付け実験を行うことにより，締結完了時の軸力のばらつきの最大値が 15％程度となることを確認した．

4. 初期締付け軸力の最大値がある値，例えばボルトの降伏軸力を超えないように，所定の軸力値までを任意の pass に分割し，段階的に軸力値を均一にしていく方法を提案した．例として締付け軸力の最大値が目標軸力値の 1.5 倍を超えない条件下で初期締付け軸力を求めた結果，3 回から 4 回の締付け作業を必要とすることを確認した．

5. 実用性の高い締付け手順として，1 回目の締付けで全てのボルトを制限された最大の等しい締付け軸力で逐次締付け，合計 2-pass の締付けで均一なボルト軸力が得られる締付け方法を提案した．
第12章

ボルト抜き取り過程の有限要素解析

12.1 はじめに

管フランジ締結体を長期間にわたって使用する場合、メンテナンスのため締結体を開放することがある。また、種々の原因によりボルトが破損して欠落する場合もある。このような場合においても、ボルトを締付ける過程と同様にボルト軸力の相互作用は生じる。つまり、あるボルトを抜き取ると、その近くのボルトの軸力は増加する。したがって、メンテナンスを目的として継続を開放した後にボルトを再使用する必要がある場合、ボルトを逐次取り外す過程における軸力変化を把握しておく必要がある。また、使用状態にある管フランジ締結体のボルトが種々の原因により欠落したときに、そのボルトのみを交換すればよいのか、つまり他のボルトが軸力の増加により降伏していないか。また、ガスケットの応力が局部的に高くなり、シール性が悪くなることはないかなど、不明な点は多い。以上の様々な問題点を考慮すると、ボルトの締付け過程同様、ボルト抜き取り過程の特性を把握しておくことは極めて重要であると考える。しかしながら、これらの点に注目した研究は著者らの知る限りほとんど無いようである。

そこで本章では、管フランジ締結体のボルト抜き取り過程およびボルト欠落時の力学的特性を有限要素解析により体系的に評価する。対象とするのは、第9章と同じ JPI class 150lb と class 300lb の管フランジとし、ガスケットとしては石綿ジョイントシートガスケットを使用している。
12.2 ボルト抜き取り過程の有限要素解析

本研究では、第8章で提案した管フランジのボルト締付け過程を評価することのできる解析手法を、ボルト抜き取り過程をシミュレーションできるように拡張する。

12.2.1 有限要素モデル

本研究において対象とするのは、第9章と同じ JPI class 150lb と class 300lb のスリップオン形管フランジである。呼び径は、class 150が1, 4, 10, 16, 20inの5種類、class 300が1, 3, 6, 10, 14, 20inの6種類を対象としている。解析に用いた管フランジの寸法は、図9.2に示している。

12.2.2 解析手順

図12.1に示す3本のボルトで締結されるフランジを例として解析手順を説明する。なお、本研究では平面座フランジを対象としているが、ボルト抜き取り過程の変形を分かりやすくするために、図12.1では平面座フランジに類似の形状を用いている。図中、f_{ij}はbolt jを抜き取った時のbolt iの軸力を示している。ここで、使用状態すなわちボルト抜き取り作業前における全てのボルト軸力は均一であると仮定する。

使用状態

全てのボルトモデルの対称面に一様な強制変位を同時に与え、各ボルトの軸力が所定の値F_iとなるまで増分計算を行う。この時の対称面に与える変位をuとする。

bolt 1の抜き取り

bolt 2とbolt 3の変位をuに保った状態で、bolt 1にuとは反対方向の強制変位を与える。その場合、bolt 1の軸力が零となり、ボルトがフランジ表面から完全に離隔するまで増分計算を行う。

bolt 2の抜き取り

bolt 1とbolt 3の変位を保った状態で、bolt 2にuとは反対方向の強制変位を与える。bolt 2の軸力が零となり、ボルトがフランジ表面から離隔するまで増分計算を行う。

bolt 3の抜き取り

bolt 1とbolt 2の抜き取りと同じ手順に従う。

上記手順の中で、抜き取りの対象となるボルトに対しては、そのボルトがフランジ
Initial State

Service Condition (uniform preloads)

Removing bolt 1

Removing bolt 2

Removing bolt 3

図12.1 ボルト抜き取り過程の解析手順
表面から完全に離隔するまで強制変位を与え、このボルトに再負荷が生じないようにしている。これは、ボルト軸力値が零となる点で強制変位の増分をやめると、以降のボルトの抜き取り作業中にそのボルトに再負荷が生じる可能性があるためである。このような作業を行うことにより、ボルトを完全に抜き取る作業を再現している。

12.2.3 解析条件

所定のボルト軸力値 \(F_t \) は、ガスケット座面平均面圧が 30MPa となるように設定する（図9.2）。また、ボルト抜き取り順序の影響を検討するために、時計回りおよび 90 度離れて位置する 4 本のボルトを 1 組として対角状に抜き取るという 2 種類の抜き取りパターンを検討する。抜き取り順序は図9.4に示している。ボルト欠落時の解析は、時計回りにボルトを抜き取り順序に従って実施される。

12.3 解析結果

12.3.1 ボルト軸力の変化

図12.2は、均一な軸力状態からボルトを 1 本ずつ抜き取る過程において、図中に示すボルトを抜き取ったときに各ボルトに残留している軸力を示している。なお解析結果は、最初のボルトを除いて 4 本おきに示されている。横軸は図9.4に示すボルト番号、縦軸は各ボルトに残留している軸力 \(F_t \) を所定の軸力 \(F_{\text{t}} \) で除して無次元化して示している。ここでは、24 本のボルトで締付けられる class 300 呼び径 20in のフランジを対象とし、対角状と時計回りの抜き取り順序を比較している。いずれの順序でボルトを抜き取る場合も、1 本目を抜き取った状態は同じである。そのため、bolt 1 を抜き取った時については、時計回りを採用した場合の結果を示す図中にのみ記している。bolt 1 を抜き取ると、両隣の 2 本のボルトの軸力が約 30%上昇している。対角状にボルトを抜き取ると、いずれの場合も 90 度離れて位置する 4 本のボルトの軸力値がほぼ同じ値になっていることがわかる。一方、時計回りにボルトを抜き取る場合、抜き取りの対象となるボルトの隣のボルトと bolt 24 の軸力が非常に高い値を示す。また、対角状に抜き取る場合と異なり、上記 2 本のボルト以外はほぼ所定の軸力値 \(F_t \) 以下となっていことがわかる。
図12.2 各ボルトを抜き取ったときに残留しているボルト軸力 (class 300lb 20in)

図12.3 と図12.4 は、それぞれ class 150 と class 300 のフランジを対象として、ボルトの抜き取り作業が進むに従って残留している軸力の最大値 F_{max} がどのように変化するかを示している。横軸はボルト抜き取り順序、縦軸は最大ボルト軸力 F_{max} を所定の軸力値 F_i で除して無次元化して示している。呼び径 1in の管フランジでは大きな軸力上昇は確認されない。それ以外の呼び径の管フランジの場合、bolt 1 を抜き取るいずれも約 30% の軸力増加が生じ、抜き取り過程が進むにつれてその値は大きくなっていく。最大軸力 F_{max} のピーク値は、時計回りの場合、抜き取り開始の初期の段階において生じているが、対角状の場合は抜き取り完了から 4 本程度前のボルトを取り除いた時に生じている。そこで発生するボルト軸力の最大値は対角状に抜き取る場合の方が大きく、図 12.4 に示した class 300lb 20in では所定の軸力値 F_i の 2.7 倍にもなっている。また class が高く、管フランジの呼び径が大きくなるほどピーク値は高くなる。
図12.3 ボルトの抜き取り過程において残留している軸力の最大値の変化 (class 150)

とがわかる。

12.3.2 解析手法の妥当性の検討

解析手法の妥当性を確認するために，第9章で用いた JPI class 300lb 呼び径 20in のスリップオン形管フランジに対してボルト抜き取り実験を行う。抜き取ったボルトに再負荷が生じないように，抜き取りの対象となるナットはその都度完全に取り外している。図12.5は，各ボルトの抜き取り過程に残留している軸力の最大値 F_{max} の変化を示している。2つの抜き取り順序に対して，それぞれ解析結果と2回の実験結果を示している。解析では，前章の図11.4に示す有限要素モデルを用いている。時計回りおよび対角状いずれの抜き取り順序を用いる場合も，解析結果と実験結果はかなり良
図12.4 ボルトの抜き取り過程において残留している軸力の最大値の変化（class 300）

図12.5 ボルトの抜き取り過程において残留している軸力の最大値の解析結果と実験結果の比較
図12.6 ボルトの抜き取り過程におけるガスケット座面外縁部の円周方向の面圧分布変化（class 300lb 6in）

く一致しており、本研究で用いている解析手法の妥当性が確認できる。

12.3.3 ガスケット座面圧力分布変化

管フランジ締結体を開放する際、ガスケットの再使用を必要とすることがある。この場合、ボルト抜き取り過程におけるガスケット座面圧力分布の変化を把握しておく必要がある。図12.6は、図中に示した各ボルトを抜き取り完了した時点におけるガスケット座面外縁部の接面圧の円周方向分布を示したものである。ここでは、12本のボルトで締付けられるclass 300lb 6inフランジを対象としており、解析結果は2本のボルトを抜き取る毎に示されている。図中48.7MPaは、全てのボルト軸力を均一と仮定

200
図12.7 2回の作業により抜き取りを完了する場合の各ボルトの抜き取り過程において残留している軸力の最大値の変化

した使用状態におけるガスケット座面外縁部の平均面圧値である。この値はボルト締付け時のフランジ部の回転変形により、平均面圧30MPaよりも高くなっている。対角状にボルトを抜き取る場合、ボルト軸力の最大値は図12.4に示すように所定の軸力値F_tの約1.7倍になるにもかかわらず、ガスケット座面の圧力分布は使用状態の平均値48.7MPaをほとんど越えていない。一方、時計回りを採用すると、抜き取り過程で部分的に高い面圧値が生じていることがわかる。同様の傾向は他の呼び径のフランジにおいても確認された。上記の結果より、管フランジ締結体を抜き取った後にガスケットを再使用するためには、ボルトを対角状に抜き取る手順の採用が好ましいといえる。

12.3.4 2回の作業で抜き取る場合

図12.3と図12.4に示したように、1回の作業で全てのボルトを抜き取る場合、その過程において特定のボルトに比較的大きな軸力値が生じる。本節では、2回の作業により抜き取りを完了する場合を検討する。はじめの抜き取り作業pass1では、所定の軸力F_tの50%を開放する。次にpass2では、完全にボルトを抜き取る。図12.7は、2つの抜き取り過程において残留しているボルト軸力の最大値F_{max}の変化を、class 300lb20inのフランジに対して示している。図12.4の1回の作業で抜き取る場合と比較すると、抜き取り過程に生じる最大軸力F_{max}のピーク値は、対角状の場合2.7F_tから2.1F_t、時計回りの場合1.9F_tから1.6F_tに低下している。pass2よりもpass1の方が軸力値が
図12.8 2回の作業により抜き取りを完了する場合のpass 1に開放する軸力の割合の影響

小さなため、pass 1でより大きな軸力を開放すれば、抜き取り作業中に生じる最大軸力のピーク値を減少させることができると考える。

図12.8は、class 300lb 20inと6inのフランジにおいてpass 1で開放する軸力の割合を変化させた時、抜き取り過程において残留するボルト軸力の最大値 F_{max} の変化を示している。20inフランジの場合、pass 1で開放する割合を75%にすると F_{max} のピーク値がpass 2からpass 1に移ることがわかる。その際、対角状に抜き取る場合はピーク値が低下しているが、時計回りに開放する場合はpass 1で50%抜き取る場合よりも高くなっている。6inフランジの場合、pass 1で開放する軸力の割合を75%とすると F_{max} のピーク値は高くなっており、pass 1で開放する軸力の割合が50%の場合 F_{max} のピーク値が最も小さくなっている。しかしながら、抜き取り作業を2回に分けて行
表 12.1 1 本および隣り合う 2 本のボルトが欠落した時の最大ボルト軸力

<table>
<thead>
<tr>
<th></th>
<th>class 150</th>
<th>class 300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS 1 bolt</td>
<td>2 bolts</td>
</tr>
<tr>
<td>4</td>
<td>1.19</td>
<td>1.17</td>
</tr>
<tr>
<td>10</td>
<td>1.19</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>1.28</td>
<td>1.42</td>
</tr>
<tr>
<td>20</td>
<td>1.23</td>
<td>1.35</td>
</tr>
</tbody>
</table>

場合でも比較的大きな軸力増加が生じており、所定の軸力値 \(F_t \) によってはより多く
の抜き取り作業を行う必要がある。

12.3.5 ボルト欠落時の特性評価

管フランジ締結体を長期にわたって使用する時に、種々の原因によりボルトが欠落
した場合、欠落した両隣に位置するボルトの軸力がどの程度増加するか検討する (102)。
表 12.1 は、ボルトが 1 本あるいは隣り合う 2 本のボルトが欠落した時の結果を、lin 以
外のフランジに対して示している。表中の値は、所定の軸力 \(F_t \) で除して無次元化して
示しており、図 12.3 と図 12.4 に示した時計回りに抜き取った場合において、ボルトを
1 本、2 本抜いた時に発生する最大軸力 \(F_{max} \) に対応している。1 本のボルトが欠落した
場合、約 1.2 \(F_t \) から 1.3 \(F_t \) の最大軸力が生じている。2 本のボルトが欠落した場合、特
に class 300 の管フランジにおいて 1.6 \(F_t \) を越えるような高い軸力が生じている。この
ため、使用状態の軸力値 \(F_t \) を高く設定している場合には、欠落した両隣のボルトが再
使用の限度を超える大きな塑性伸びを生じる可能性があり注意が必要である。しか
しながら、図には示していないが 2 本のボルトが欠落する程度ではガスケット座面圧分
布に顕著な変化は見られず、ガスケットの交換は不要であると考える。したがって現
場の作業としては、欠落したボルトのみ、または欠落したボルトと降伏したボルトを
交換すれば締結体の補修は完了できると考えられる。

203
12.4 結言

管フランジ締結体のボルト抜き取り過程の力学的特性を有限要素解析により体系的に評価した結果、次のような結論を得た。

1. ボルト抜き取り過程に生じるボルト軸力の最大値は、classが高く呼び径が大きいフランジほど大きくなる。

2. ボルト抜き取り順序として対角状と時計回りの2つのパターンを比較した。その結果、抜き取り過程に残留しているボルト軸力の最大値は対角状に抜き取る方が高くなるが、ガスケット座面外縁部の最大面圧値は時計回りの方が高くなることを示した。

3. 2回の作業によりボルトを抜き取る場合を検討した。その結果、1回の作業で全てのボルトを抜き取る場合よりも軸力の増加は低くなり、その値は1回目の作業時に抜き取るボルト軸力の割合を多くするとより低くすることができる。

4. 管フランジ締結体の締付けボルトが種々の原因により1本または2本欠落する場合を想定し、欠落するボルトの両隣のボルトの軸力変化について検討した。その結果、1本のボルトが欠落した場合、所定の軸力値の約1.2から1.3倍の最大軸力が生じ、隣り合う2本のボルトが欠落した場合は所定の軸力値の1.6倍を越える場合があることを示した。

5. 本研究で使用した解析手法の妥当性を確認するために、管フランジ締結体のボルト抜き取り実験を行った。その結果、抜き取り過程で発生するボルト軸力の最大値について解析結果と実験結果は比較的良好一致しており、解析手法の妥当性を確認した。

204
第13章

内圧および曲げモーメント負荷時の
管フランジ締結体の力学的特性

13.1 緒言

近年，管フランジ締結部における事故は，フランジ・ボルトの強度的問題より，内部流体の漏洩に起因する場合が多いようである．さらに，今日の環境問題に対する規制により，これまで無視されてきたフランジ部からの微小漏洩が問題になってきている(3)．

管フランジ締結体の漏洩特性には，ガスケット座面圧の分布特性が強く影響を及ぼすと考えられる(73, 103)．そのため，管フランジ締結体におけるボルトの離散的配置，およびフランジローテーションにより生じるガスケット座面圧分布を精度良く評価することが重要である．しかしながら，面圧分布の測定(72, 104, 105)は非常に困難であり，また規格等に対する体系的な評価のためには，解析的な検討が不可欠である．これまで，金属ガスケットを用いた研究は数多く報告されており(61, 66, 67, 69)，精度の良い解析手法が提案されている．これに対して，一般的に広く用いられているソフトガスケットやセミメタリックガスケットに関しては，ガスケット挙動の複雑さのために，簡略化したモデリングを用いた研究(58, 72, 73, 75)が多く，解析手法が確立されているとはいえないがたい．

そこで本章では，石綿ジョイントシートガスケットを用いた管フランジ締結体の力学的特性を，数値解析により精度良く評価することを目的としている．解析には，第8章で提案したガスケットを一次元非線形要素として組み込んだ三次元有限要素解析
13.1 各過程における境界条件

を適用し、管フランジ締結体の使用条件に対応して、組立、内圧負荷、曲げモーメント負荷の各過程を連続して評価する。このため、ボルト締付け時に生じるボルト軸力のばらつきを考慮することが可能となる。そして、漏洩特性に対して特に重要であると考えられるガスケット座面圧分布と外荷重に対するボルト軸力の変化を考察する。

13.2 解析方法

本研究では、第8章で提案した管フランジのボルト締付け過程を評価することのできる解析手法を、組立、内圧負荷、曲げモーメント負荷の各過程を連続して評価できるように拡張する。

13.2.1 解析手順

本研究で用いる解析手法は、
(i) 管フランジ組立時のボルトの締付け過程
(ii) 稼働時における内部流体による内圧負荷過程
(iii) 自重や地震の液状化現象等(1)による曲げモーメント負荷過程

图13.1 各過程における境界条件
の各条件を連続して評価することができる。図 13.1 は、上記の各条件に対応する境界条件を示している。(i) のボルト締付け過程においては、締付けの対象となるボルトの対称面に順次強制変位を与え、ボルト 1 本ずつの締付けを表現している。また、全てのボルト軸力を一様とする場合は、全てのボルトの対称面に一様な強制変位を同時に与えている。(ii) の内圧荷重過程においては、内圧 \(p \) をフランジ内面およびガスケット面のガスケットが存在しない部分に、面直角方向の分布荷重として作用させている。内圧により生じる長手方向の引張り荷重は、換算してフランジの端部に軸方向の分布荷重 \(p' \) として与えている。(iii) の曲げモーメント荷重過程においては、フランジ端部に曲げ応力に対応した分布荷重を作用させている。

ガスケットの材料特性および接触問題より生ずる非線形特性は、増分法により線形化して扱っている。そのため、各過程においてそれ以前の荷重履歴は考慮されている。また上記の一連の解析は、プログラムの中で自動的に処理されるので、計算の途中での解析者による修正等は不要となっている。

13.2.2 解析モデル

対象とする管フランジは、第 II 部で用いた JIS B 2238 呼び圧力 40K、呼び径 50 の大平面座を有するものである。この管フランジを、メートル並目ねじ M16 を有する 8
図 13.3 円周座標とボルト番号

本のボルトで締付ける．ボルト・ナットの等価モデルおよび管フランジのヤング率とボアソン比は，それぞれ 200GPa および 0.3 一定となっている．

本解析において用いた有限要素モデルを図 13.2 に示している．ボルト締付け過程を評価する場合は，図 13.2 (c) のモデルを用いる必要がある．しかしながら，全てのボルト軸力を一様とする場合は，曲げモーメント作用の有無に対応して図 13.2(a) または (b) のモデルを用いることにより計算効率を上げ，かつ精度のよい結果を得ることができる．

13.3 一様なボルト軸力の場合

全てのボルトが一様な軸力で締付けられている状態を仮定し，その状態から内圧，さらに曲げモーメントが作用する場合の挙動を考察する．このため解析では，図 13.2 における有限要素モデル (a) または (b) を使用している．また図 13.3 には，曲げモーメントの作用方向，ガスケット座面における半径および円周座標，ボルト番号を示している．
図13.4 内圧の増加にともなうポルト軸応力の変化

図13.5 ガスケット座面の半径方向の面圧分布 (σ_i = 100MPa)

13.3.1 内圧負荷過程

ポルトの初期締付け軸応力\(\sigma_i\)を50MPa（ポルト軸力=10.1kN）、100MPa（ポルト軸力=20.1kN）とし、内圧の増加にともなうポルト軸応力の変化を図13.4に示しており、横軸は内圧\(p\)、縦軸はポルト軸応力\(\sigma_f\)を初期締付け軸応力\(\sigma_i\)で除して無次元化して示している。いずれの\(\sigma_i\)に対しても、内圧の増加とともにほぼ直線的に軸力が増加している。また、\(\sigma_i\)が小さいほど内圧の増加にともなう\(\sigma_f\)の変化率は大きくなっている。ここで、解析結果から算出した内力係数\(\Phi\)は、\(\sigma_i\)が50MPa、100MPaの場合に対
応じて、それぞれ 0.230, 0.168 となった。内力係数 Φ は、次式で定義している。

$$\Phi = \frac{（あるボルトの軸力増加量）}{（フランジ軸方向外力）/(ボルト本数)}$$ (13.1)

ここで（フランジ軸方向外力）はガスケットの内径を直径とする円の面積に内圧を掛けた値となる。この内力係数は、ガスケットの除荷曲線の傾きに大きく依存する。ここで用いている石綿ジョイントシートガスケットの場合、図 7.6 に示すように初期締付け時のガスケット応力レベルが小さいほど除荷開始時の傾きが小さくなり、結果として内力係数は大きくなると考えられる。内圧作用開始時、図 13.3 における r = 52.5, \(\theta = 0.0^\circ \) 部のガスケット除荷曲線の傾きは、\(\sigma_i = 50 \text{MPa}, 100 \text{MPa} \) に対して、それぞれ 2.4GPa, 3.1GPa となった。また図 13.4 から、実験値と解析値は比較的よく一致していることが分かる。

図 13.5 は、\(\sigma_i = 100 \text{MPa} \) の場合の初期締付け時および内圧 \(p = 5 \text{MPa} \) 時のガスケット座面圧分布を示している。ここでは、ボルト穴の中心を通る \(\theta = 0.0^\circ \), および隣接するボルト穴との対称部分である \(\theta = 22.5^\circ \) における半径方向の面圧分布を示している。初期締付け時の平均ガスケット面圧は、28.0MPa である。ガスケット座面形状として平面座を对象としているため、ボルト締付けによりフランジ部のローテーションが生じる。ガスケット座面圧は座面外縁部へ行くほど高くなっている。内圧が増加すると、全体的に面圧は低下しているが、半径方向の面圧変化率はやや大きくなっている。これは、内圧が増加するほど、ガスケット荷重は除荷されるが、フランジのローテーションが大きくなることに起因している。また、\(\theta = 0.0^\circ \) と 22.5° における半径方向面圧分布は、ほとんど差が見られない。さらに、初期締付け時のガスケット有効幅を JIS B 2205 基づき算出すると 8.4mm となる。本解析による値は 9.6mm となり、両者の差は比較的小さい（69）。このことは、ガスケット座面において接触面の離隔が生じておらず、またガスケット座面圧分布が比較的緩やかに変化していることに起因していると考えられる。

13.3.2 曲げモーメント負荷過程

ボルトの初期締付け軸応力 \(\sigma_i \) を 100MPa とし、5MPa の内圧 \(p \) を作用させた後に、曲げモーメント \(M \) を 2.5kN·m まで作用させる。その時の曲げモーメントの増加にともなうボルト軸応力 \(\sigma_f \) の変化を、図 13.6 に示している。曲げモーメント \(M \) が増加すると、
図 13.6 曲げモーメントの増加にともなうボルト軸応力の変化 ($\sigma_i = 100\text{MPa}$)

図 13.7 内圧の増加にともなうボルト軸応力の変化 (bolt1)

M による引張り側に位置する bolt1, bolt2 の軸力は増加し, 圧縮側の bolt5, bolt4 は低下している。また, bolt3 の軸力はほとんど変化していない。実験値と解析値を比べると, bolt1, bolt2, bolt3 においては比較的よく一致しているが, bolt4, bolt5 に関しては, 解析の変化率の方が大きくなっている。図 13.7 は, σ_i が 50MPa と 100MPa の場合について, 曲げモーメントの増加に伴う bolt1 の軸応力の変化を示している。図 13.4 と同様に, 初期締付け軸応力 σ_i が小さいほど, M の増加に対するボルト軸応力 σ_f の変化の割合は大きくなっている。また, 実験値と解析値は比較的よく一致している。
図13.8 ガスケット座面外縁部における円周方向の面圧分布 ($\sigma_l = 100\text{MPa}$)

表13.1 内力係数 Φ

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bolt1</td>
<td>0.189</td>
<td>bolt5</td>
</tr>
<tr>
<td>bolt2</td>
<td>0.184</td>
<td>bolt6</td>
</tr>
<tr>
<td>bolt3</td>
<td>0.188</td>
<td>bolt7</td>
</tr>
<tr>
<td>bolt4</td>
<td>0.194</td>
<td>bolt8</td>
</tr>
</tbody>
</table>

図13.8は、$\sigma_l=100\text{MPa}$とした時の、初期締付け時、内圧 $p=5\text{MPa}$作用時、さらに $M=1.25\text{kN}\cdot\text{m}$あるいは $2.5\text{kN}\cdot\text{m}$の曲げモーメントを負荷した時の、ガスケット座面外縁部における円周方向の面圧分布を示している。内圧が作用すると、面圧は一様に低下している。この状態から曲げモーメント Mを与えると、引張り側の $\theta = 0.0^\circ$ 部分の面圧は低下し、圧縮側の $\theta = 180^\circ$ 側では面圧が増加している。また $\theta = 0.0^\circ$ 部における低下量は、$\theta = 180^\circ$の増加量に比べて大きくなっており、漏洩特性の観点からは好ましくない結果となっている。これは、$\theta = 0.0^\circ$ 部と $\theta = 180^\circ$ 部において、負荷方向が反対となり、ガスケットの厚さ方向の剛性が異なるためであると考えられる。

13.4 ボルト締付け過程を考慮した場合

一般に、管フランジ締結体の組立作業は、多数のボルトを１本ずつ締付けることにより行われる。その場合、仮にはじめのボルトを所定の軸力で締付けることができた
図 13.9 各 pass 完了時のボルト軸応力のばらつき

図 13.10 ガスケット座面外縁部における円周方向の面圧分布 ($\sigma_i = 100\text{MPa}$)

とても、引き続いて他のボルトを締付けていくと各ボルト間の相互作用により、締結完了時のボルト軸力は大きくばらつくことが知られている。このため、ボルト軸力がばらついた状態におけるガスケット座面圧分布、およびこの状態にさらに外荷重が作用した時の挙動を把握しておくことは、管フランジ締結体の漏洩特性を知る上で極めて重要である。ここでは、図 13.2(c) の有限要素モデルを用いる。

実際の締結作業においては、所定の軸力まで数回の締付け作業により締結を完了するのが一般的である。そこで、ボルト初期軸応力 $\sigma_i = 100\text{MPa}$ を目標値として、20%
60%、100% と締付け軸力を順次増加させて 3 回の作業により締付けを完了する場合を対象とする。各 pass 完了時のポルト軸応力のばらつきに対する解析結果を、図 13.9 に示している。ここで、締付け順序はいずれの pass においても前節同様 1 → 5 → 3 → 7 → 2 → 6 → 4 → 8 とされている。図 13.9 から、3 回の締付け作業を行っているにも関わらず、最終的に 50% 程度のばらつきが生じており、前章で検討した一樣なポルト軸力状態を得るためには、さらなる締付け作業を必要とすることがわかる。この pass 3 締結完了時、およびこの状態から内圧 p を 5MPa 作用させ、さらに曲げモーメント M を 1.25kN·m、2.5kN·m 与えたときのガスケット座面面圧分布の変化を図 13.10 に示している。図 13.9 の pass 3 完了時の軸力状態に対応する初期締付け時の面圧は、図 13.8 に示す一样なポルト軸力状態に比べて値が小さくなっており、円周方向にかなり変化していることがわかる。しかしながら、そのばらつきは図 13.9 に示す軸応力のばらつきほど顕著ではない。この理由は、90° 離れて位置する bolt2, bolt4, bolt6, bolt8 が、σi のほぼ 100% で締付けられていることによる。pass 3 の締付け完了時から内圧 p を作用させると、面圧は円周方向に変化しているにもかかわらず、全体的にほぼ一样に低下している。この状態から曲げモーメント M を作用させると、引張り側において面圧がさらに低下している。この場合、曲げモーメントによる引張り側が、ポルト締付け時のガスケット座面圧の高い部分に対応しているが、モーメントの作用方向が 90° 回転すると、ガスケット座面圧をさらに低下させる可能性がある。

表 13.1 は、内圧が作用した時の各ポルトの内力係数 Φ を示している。値は、0.184 から 0.202 の比較的狭い範囲でばらついているが、初期締付け完了時に面圧値が高いところに位置するポルトほど、内力係数が低くなっていることがわかる。これは、図 13.4 の結果と同様の傾向を示している。

13.5 結言

強い非線形挙動を示す石綿ジョイントシートガスケットを用いた管フランジ締結体に、内圧および曲げモーメントが作用した場合の力学的特性を評価した結果、以下に示すような結論を得た。

1. 強い非線形特性を示す石綿ジョイントシートガスケットを、非線形一次元要素と
して三次元有限要素解析に組み込むことにより，組立，内圧負荷，曲げモーメン
ト負荷の各過程を連続して評価することのできる解析手法を提案した．
2. 初期ボルト軸力が小さいほど，内圧および曲げモーメントの増加に対するボルト
軸力の変化率が大きくなることを示し，非線形ガスケット要素の導入によりこの
現象を解析的に明らかにした．
3. 曲げモーメントが作用する場合，引張り側のガスケット座面面圧の変化は，圧縮
側に比べて顕著である．
4. ボルト締付け過程を考慮し，軸力にばらつきが存在する時のガスケット座面面圧
分布の変化と内力係数を求めた．面圧の円周方向分布は，ボルト軸力のばらつき
ほど顕著ではないが，その値は全般的に一様なボルト軸力で締付けられている場
合に比べて低い．また，この状態から内圧が作用すると，面圧は円周方向の分布
形態を保った状態でほぼ一様に低下し，面圧値が高いところに位置するボルトほ
ど内力係数が小さくなる．
5. 管フランジの内圧と曲げモーメントの負荷実験を行うことにより，解析手法の妥
当性を確認した．
第14章

結論

管フランジ締結体は、組立・外荷重負荷・メンテナンスなどの各過程において、固有な力学的特性を呈する。多数のボルトで締結されるという構造上、組立時にボルトを1本ずつ逐次締付ける過程において、弾性相互作用がよく現れる現象が生じ、均一な軸力状態を達成することは非常に困難である。通常ボルトはトルク法を用いて締付けられることが多く、軸管管の精度は接面の摩擦特性に影響を及ぼす。また、漏洩特性を向上させることを目的としてガスケット座面の接触面圧を高くするために、平面座フランジが広く使用されている。この場合ボルトの締付けにともないフランジローテーションが生じ、ガスケット座面圧が半径方向に変化する。そのため、内部流体の漏洩量を見積もることが困難になる。使用時に内部に流体による内圧を受けフランジローテーションは助長され、ボルト轴力をガスケット座面圧は変化する。また、自重や地震等により曲げモーメントが負荷されることもあり、その際漏洩能力を保持できるかどうか問題となる。さらに、メンテナンスを目的として管フランジ締結体を解放する際または何らかの原因によりボルトが欠落する際においても、ボルト締付け過程と同様、ボルト軸力の相互作用は生じ、ボルト軸力の再配分が起こる。

上記のような管フランジ締結体の一連の特性を把握しておくことは、精度の高い設計を行うために大変重要である。しかしながら、管フランジ締結体は複雑な構造を有しており、さらに強い非線形挙動を示すガスケットを間に介している。ガスケットの剛性は非常に低いため、管フランジ締結体の力学的特性はガスケットに強く影響を受ける。そのため、管フランジ締結体の特性評価および設計は極めて困難であり、有限要素解析などの数値解析による評価が不可欠である。

本研究では、管フランジ締結体の上記様々な特性をシミュレーションすることので
きる有限要素解析手法を提案し、その手法を用いて管フランジ締結体のボルト締付け特性と外荷重負荷時の力学的特性を体系的に評価することを目的として研究を進めてきた。その結果、以下に示すような結論を得た。

第Ⅰ部では、単一ボルトの締付け過程における力学的特性の評価を行った。
まず、トルク法によりボルトを締付ける際の締付けトルク解放直後の挙動に注目し、ボルト軸力、各部トルク、各接触面の摩擦係数の相互関係を実験的に明らかにした。また、締付けトルク解放後のボルト軸力および各部トルクの低下率を、弾性接触問題として有限要素により解析する手法を提案し、実験結果と比較することによりその妥当性を確認した。つぎに、トルク法によるボルト締付け過程を、二次元形状モデルを用いた三次元弾塑性接触問題として解析する手法を提案し、ねじ谷底の塑性域の広がり、ねじ山荷重分担率の変化、ボルト軸力と伸びあるいはナット回転角の関係について考察を行った。さらに、本解析手法の塑性域締付け法への適用性も確認した。

第Ⅱ部では、管フランジ締結体の特性評価の第Ⅰ段階として、金属平形ガスケットを用いた管フランジ締結体を対象に、ボルト締付け特性および荷重が作用する場合の力学的特性の評価を行った。
締付け特性の評価としては、多数のボルトを一本ずつ締付ける過程をシミュレーショーンすることのできる有限要素解析手法を提案し、ガスケット座間形状および管フランジの呼び径がボルト締付け特性に及ぼす影響を検討した。また、この手法を応用することにより、一度の締付け作業で均一な軸力状態を達成するために必要な初期ボルト軸力の算出を試みた。
力学的特性の評価としては、複雑な形状を有する管フランジ締結体のモデリング方法を工夫し、管フランジの形状および寸法が管フランジ締結体の内圧荷負特性におよぼす影響を検討した。また、内圧と曲げモーメントが同時に作用する際の、ボルト軸力変化およびガスケット座間の面圧分布変化を評価した。金属平形ガスケットの材質と厚さの違いによる影響についても検討を行った。

第Ⅲ部では、ジョイントシートガスケットやうず巻形ガスケットなど、圧縮過程において複雑な応力・ひずみ関係を示すガスケットを用いた管フランジ締結体の特性を評価した。
はじめに,ガスケットの複雑な応力-ひずみ関係を同定する方法を提案した.つぎに,管フランジ締結体のボルト締付け過程および内圧や曲げモーメント負荷過程をシミュレーションすることのできる三次元有限要素解析を提案した.ここでは,同定したガスケットの応力-ひずみ関係を,一次元ガスケット要素として導入した.提案した解析手法は,管フランジ締結体のボルト締付け実験および内圧や曲げモーメント負荷実験を行い,ボルト軸力の変化を比較することによりその妥当性を確認した.

提案した有限要素解析手法を用いて,体系的なボルト締付けシミュレーションを行なう.多数のボルトで締結される管フランジ締結体のボルト締付け特性を評価した.そして最終的に,ジョイントシートガスケットを用いたガスケット締結体のボルト締付け指針を提案した.また,一一番付け作業で均一な軸力状態を達成することのできる効率のよいボルト締付け手順を提案した.ここでは,提案した有限要素解析と弾性相互作用係数法を併用した.

ボルト締付け過程を再現することのできる有限要素解析を応用することにより,ボルトを抜き取る過程およびボルト欠落時の力学的特性を体系的に評価した.

最後に,管フランジ締結体内圧および曲げモーメントが作用する過程を有限要素解析により評価し,ボルト締付け過程において生じるボルト軸力にばらつきが存在する場合の特性も考察した.

管フランジ締結体の設計は,全てのボルトが均一に締付けられているという状態の仮定の下で行われている.しかしながら,その組立段階においてボルト軸力を均一にすることは極めて困難であり,ある程度のボルト軸力のばらつきは避けられない.このため,ボルト軸力のばらつきを考慮した管フランジ締結体の設計手法,および設計段階で見積もったボルト軸力のばらつきを満足するようなボルトの締付け手順を確立することは極めて重要である.本研究は,特に後者の問題に対して貢献できたものと考える.前者の問題に対しては,管フランジ締結体の力学的特性を評価することのできるツールを作製した.今後の課題は,管フランジ締結部からの内部流体の漏洩量と,有限要素解析の結果得られるガスケット座面圧分布などの関係を明らかにし,より明確な管フランジ締結体の設計手法を確立することである.
参考文献

(2) Bickford, J. H., Gaskets and Gasketed Joints, Marcel Dekker, (1998), 139.

(6) 吉本 勇, ねじ締結体設計のポイント. 日本規格協会, (1992), 166–186.

(8) 北郷 薫, 吉本 勇, 江藤元大, 佐々木努, トルク法におけるねじの適正締付け力に関する研究, 精密機械, 39–7, 第3部 (1973), 748–752.

(9) 吉本 勇, トルク法におけるねじの適正締付け力の求め方, 機論, 38–315, (1972), 3017–3020.

(10) 酒井智次, ねじ部品の摩擦係数, 機論, 43–370, 第3部 (1977), page1–page2.

(25) Fukuoka, T., Evaluation of the Method for Lowering Stress Concentration at
the Thread Root of Bolted Joints with Modifications of Nut Shape, ASME J.

(26) 福岡俊道, 許 全托, 熱膨張法によるボルト締付け過程について, 機論, 63–607,
(1997), 561–566.

(27) 福岡俊道, 許 全托, 熱膨張法によるボルト締付け過程の解析 (接触面の熱抵抗

(28) 森 和也, 村上敬宜, 橋村真治, 村井良一, 松井 悟, トルクと圧縮力の同時負荷

(29) 橋村真治, 村上敬宜, 森 和也, 嶺木邦彦, ボルトの締付け過程における座面摩擦

(30) 福岡俊道, 北川 浩, 山崎直樹, 浜田 実, ボルト締付け, 機論, 51–462, (1985),
504–509.

(31) 福岡俊道, 各種締付け形態におけるボルトの力学的特性, 機論, 62–594, (1996),

(32) Lenhoff, T. F., and Bunyard, B. A, Bolt Thread and Head Fillet Stress Concen-

(33) 砂本大造, ねじ継手におけるねじ山の弾塑性たわみとひずみ集中, 機論, 45–399,
C(1979), 1287–1298.

(34) 田中道彦, 朝場栄喜, 宮澤英夫, 北郷 薫, ねじ締結体への有限要素法の応用（ねじ

(35) Chaaban, A., and Muzzo, U., Finite Element Analysis of Residual Stresses in
Threaded End Closures, ASME J. of Pressure Vessel Technology, 113, (1991),
398–401.

(48) Schneider, R. W., Flat Face Flanges With Metal-to-Metal Contact Beyond the Bolt Circle, ASME J. of Engineering for Power, 90, (1968), 82–88.

(58) Sawa, T., Asahina, M., and Ishihara, T., Analysis of Mechanical Behaviors and
the New Gasket Factors of Pipe Flange Connections with Non-Asbestos Gaskets

(59) 林則行, 芳我 攻, 吉野雄二郎, 管フランジ継手の光弾性応力解析, 機論, 41–349,
第 1 部 (1975), 2540–2548.

(60) 西岡邦夫, 森田喜保, 河嶋寿一, 一体形管フランジの強度 (第 1 報, 応力分布の解

(61) 西岡邦夫, 森田喜保, 河嶋寿一, 一体形管フランジの強度 (第 2 報, ガスケット面

(62) 森田喜保, 河嶋寿一, 一体形管フランジの強度 (第 3 報, 最大子午線方向応力の
設計公式), 機論, 45–399, A(1979), 1299–1304.

(63) 沢 俊行, 白石浩之, ねじ締結体の内力係数の簡単な求め方 (被締結体が円形フ

(64) 沢 俊行, 丸山久則, 接合面形状がねじ締結体の特性に及ぼす影響 (被締結体が

(65) 沢 俊行, 諸星常志, 山本京一, 曲げモーメントを受けるねじ締結体の特性につ
いて (三次元弾性論による被締結体が管フランジの場合の解析), 機論, 53–491,

(66) 沢 俊行, 熊野博之, ガスケットを用いたねじ締結体の特性について (管フラン
ジには含まれた全面座金属平形ガスケットの応力解析), 機論, 50–455, A(1984),
1383–1393.

(67) 沢 俊行, 熊野博之, 岩川浩文, ガスケットを用いたねじ締結体の特性について
(管フランジには含まれた平面座形金属ガスケットの応力解析), 機論, 51–466,
A(1985), 1587–1596.
(68) 諸星常志, 沢 俊行, 丸山一男, 山本京一, 曲げモーメントを受けるねじ締結体の特性について（被締結体がガスケット付き管フランジの場合の三次元弾性論による解析）、機論, 54-505, C(1988), 2188–1926.

226

(86) ASME, Guidelines for Pressure Boundary Bolted Flange Joint Assembly(draft), ASME PCC-1, (2000).

(89) 岡本 紀明, 有限要素法による非線形接触問題の解析, 機論, 43–374, 第1部 (1977), 3716–3722.

227

(94) 北川浩, 日浦誠司, 殻体の接触に伴う弾塑性不安定変形の解析, 機論, 54–500, A(1988), 786–793.

(96) 富田佳宏, 弾塑性力学の基礎と応用 (数値シュミレーションへの導入), 森北出版, (1995), 54.

(97) 辻裕一, 丸山一男, 塑性域締結におけるねじ締結体の挙動 (ねじ部の降伏軸力の推定方法), 精密工学会誌, 57–9, (1991), 1627–1632.

(101) 酒井智次, ねじ締結概論, 養賢堂, (2000), 22.

関連発表論文

学術雑誌
(1) 福岡俊道, 高木知弘, トルク法によるボルト締付け過程の力学的特性について, 日本機械学会論文集, 第 63 巻, 第 609 号, A(1997), 1083–1088.

(2) 福岡俊道, 高木知弘, 管フランジの三次元有限要素解析（座面形状の影響について）, 日本機械学会論文集, 第 64 巻, 第 625 号, A(1998), 2402–2407.

(3) 福岡俊道, 高木知弘, 三次元有限要素解析による管フランジのボルト締付け順序の評価, 日本機械学会論文集, 第 64 巻, 第 627 号, A(1998), 2734–2740.

(9) 高木知弘, 福岡俊道, 管フランジ締結体の効率的なボルト締付け手順（有限要素解析と弾性相互作用係数法による検討）日本機械学会論文集, 第 68 巻 668 号, A(2002),
550–557.

国際会議論文集

